The answer is <span>A. Speed=100 million m/s and frequency = 50 million Hz.</span>
Let's calculate for each choice the wavelength using the equation:
v = f × λ ⇒ λ = v ÷ f<span>
where:
v - the speed,
f - the frequency,
</span>λ - the wavelength.
A:
v = 100 000 000 m/s
f = 50 000 000 Hz = 50 000 000 1/s (Since f = 1/T, so units are Hz = 1/s)
⇒ λ = 100 000 000 ÷ 50 000 000 = 2 m
B:
v = 150 000 000 m/s
f = 1 500 Hz = 1 500 1/s
⇒ λ = 150 000 000 m/s ÷ 1 500 = 100 000 m
B:
v = 300 000 000 m/s
f = 100 Hz = 100 1/s
⇒ λ = 300 000 000 m/s ÷ 100 = 3 000 000 m
According to these calculations, the shortest wavelength is needed for choice A.
Your answer for this question is the third option.
Answer:
- Particles smaller than atoms are called subatomic particles .
- There are three famous subatomic particles, proton, neutron and electron .
- The study of sub atomic particles are called particle physics
- These particles can be divided as Brayons and Leptons
- These particles are often held together by one of the four fundamental particles ( Weak force, strong force, electromagnetic force, gravitational force).
Answer:
a soft foam material because soft materials absorb sound better
Answer:
Point D
Explanation:
The epicenter of a hypothetical earthquake is located at the point where the earthquake begins.
(See the attached image).
Hope it helps!