When the concentration of a reactant is increased, the chemical equilibrium will shift towards the products. More product is formed and the concentration of the reactants decreases as the concentration of the products increases.
Water can be turned to ice if to cold gas if to hot
ice can turn to water if to hot and stay the same if to cold
gas will turn to water if to hot and freeze to ice if to cold and the pattern keeps going like that.
hope this helps
Answer:
Explanation is in the answer
Explanation:
The pH of the buffer solution does not change appreciably because the strong acid (free H⁺) reacts with conjugate base of buffer producing more weak acid. pH formula of buffers is (Henderson-Hasselbalch formula):
pH = pKa + log ( [A⁻] / [HA] )
The addition of strong acid decreases [A⁻] increasing [HA]. pH change just in the log of the ratio of [A⁻] with [HA], that is a real little effect over pH of the buffer solution.
Answer:
z≅3
Atomic number is 3, So ion is Lithium ion (
)
Explanation:
First of all
v=f*λ
In our case v=c
c=f*λ
λ=c/f
where:
c is the speed of light
f is the frequency

Using Rydberg's Formula:

Where:
R is Rydberg constant=
z is atomic Number
For highest Energy:
n_1=1
n_2=∞

z≅3
Atomic number is 3, So ion is Lithium ion (
)