Answer:
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly.Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves. A vibrating string can create longitudinal waves as depicted in the animation below.
Explanation:
<span>The ability of an atom to attract the shared electrons in a covalent bond is its:</span>electronegativity.
Answer:
z≅3
Atomic number is 3, So ion is Lithium ion (
)
Explanation:
First of all
v=f*λ
In our case v=c
c=f*λ
λ=c/f
where:
c is the speed of light
f is the frequency

Using Rydberg's Formula:

Where:
R is Rydberg constant=
z is atomic Number
For highest Energy:
n_1=1
n_2=∞

z≅3
Atomic number is 3, So ion is Lithium ion (
)
Answer:
C. Gas exchange occurs through the placenta.
Explanation:
The fetus is a developing baby in the womb or uterus. The fetus is incapable of performing certain life processes itself and hence, depends on the mother to do them. One of these processes is GAS EXCHANGE. Gas exchange occurs in the fetus via a structure called PLACENTA.
Placenta is a structure that forms in the uterus during pregnancy. It helps the developing fetus supply oxygen and nutrients from the mother and also remove wastes from the fetus back to the mother. The oxygen is taken into the fetus via the PLACENTA while the carbon dioxide (waste product of respiration) is removed via the PLACENTA. Hence, Gas exchange occurs through the placenta.
A bronsted lowry base will react to accept protons