Answer:
5.96 g/cm^3
Explanation:
Corner atom = 1/8
Atoms in center = 1
Atoms in face of the cube= 1/2
Molar mass of V = 50.94 g/mol <em>(from period table)</em>
1 mole = 6.02x10^23
<em>In BCC unit cell:</em>
(8 x 1/8)+ 1=2 per 1 unit cell
<em>Mass: </em>2(50.94g)/6.02x10^23 = 1.69x10^-22 g/unit cell
305pm=(305x10^-12m÷10^-2m) x (1mL÷1cm^3)
= 2.837 x 10^-23 mL
<em>1pm=10^-12m</em>
<em>1cm=10^-2m</em>
<em>1mL=1cm^3</em>
<em></em>
density=mass/volume
density of V = 1.69x10^-22g÷2.837x10^-23mL
=5.957g/mL
=5.96g/cm^3
Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
Thank you :))) for the points have a great day
You haven't attached any options but anyways, to help you with your question, elements belonging to the same group (e.g. alkali metals, noble gases) all have the same chemical properties. Hydrogen, for example, have the same properties with Sodium, Potassium and Lithium.
I just answered your other question and wrote all the definitions of the terms. I would say this is probably refering to Fusion because you are fusing together more nuclei into one nucleus. Fusion= bringing separate things into one entity.