Answer:
54g
Explanation:
Given parameters:
Number of moles of H₂O = 3 moles
Unknown:
mass of water = ?
Solution:
To solve this problem, we use the expression below:
mass = number of moles x molar mass
Molar mass of H₂O = 2(1) + 16 = 18g/mol
Mass of water = 3 x 18 = 54g
Answer:
There are 0.93 g of glucose in 100 mL of the final solution
Explanation:
In the first solution, the concentration of glucose (in g/L) is:
15.5 g / 0.100 L = 155 g/L
Then a 30.0 mL sample of this solution was taken and diluted to 0.500 L.
- 30.0 mL equals 0.030 L (Because 30.0 mL ÷ 1000 = 0.030 L)
The concentration of the second solution is:

So in 1 L of the second solution there are 9.3 g of glucose, in 100 mL (or 0.1 L) there would be:
1 L --------- 9.3 g
0.1 L--------- Xg
Xg = 9.3 g * 0.1 L / 1 L = 0.93 g
It allows electrons to flow from the anode to the cathode.
Answer: option C. HF
Explanation: A polar bond is a covalent bond between two atoms where the electrons forming the bond are unequally distributed. Fluorine is more electronegative than hydrogen so the electrons in the bond are more closely associated with the fluorine atom than with the hydrogen atom.
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).