Answer:
bottom right top left fig
Answer: 1) Maximum mass of ammonia 198.57g
2) The element that would be completely consumed is the N2
3) Mass that would keep unremained, is the one of the excess Reactant, that means the H2 with 3,44g
Explanation:
- In order to calculate the Mass of ammonia , we first check the Equation is actually Balance:
N2(g) + 3H2(g) ⟶2NH3(g)
Both equal amount of atoms side to side.
- Now we verify which reagent is the limiting one by comparing the amount of product formed with each reactant, and the one with the lowest number is the limiting reactant. ( Keep in mind that we use the molecular weight of 28.01 g/mol N2; 2.02 g/mol H2; 17.03g/mol NH3)
Moles of ammonia produced with 163.3g N2(g) ⟶ 163.3g N2(g) x (1mol N2(g)/ 28.01 g N2(g) )x (2 mol NH3(g) /1 mol N2(g)) = 11.66 mol NH3
Moles of ammonia produced with 38.77 g H2⟶ 38.77 g H2 x ( 1mol H2/ 2.02 g H2 ) x (2 mol NH3 /3 mol H2 ) = 12.79 mol NH3
- As we can see the amount of NH3 formed with the N2 is the lowest one , therefore the limiting reactant is the N2 that means, N2 is the element that would be completey consumed, and the maximum mass of ammonia will be produced from it.
- We proceed calculating the maximum mass of NH3 from the 163.3g of N2.
11.66 mol NH3 x (17.03 g NH3 /1mol NH3) = 198.57 g NH3
- In order to estimate the mass of excess reagent, we start by calculating how much H2 reacts with the giving N2:
163.3g N2 x (1mol N2/28.01 g N2) x ( 3 mol H2 / 1 mol N2)x (2.02 g H2/ 1 mol H2) = 35.33 g H2
That means that only 35.33 g H2 will react with 163.3g N2 however we were giving 38.77g of H2, thus, 38.77g - 35.33 g = 3.44g H2 is left
Answer:
1. Ionic bond
2. High melting point and high boiling point for ionic bonds while covalent bonds have low melting and boiling point.
3. The similarity is that ionic and covalent bonding lead to the creation of stable molecules.
4. 4Fe + 3O2 → 2Fe2O3
5. It uses the process of fission.
6. Fission involves the splitting of radioactive elements into smaller particles/compounds while Fusion involves combining of two or more atomic nuclei to form one or more different atomic nuclei and subatomic particles.
7. Nuclear power plants produce little to no greenhouse gas.
Nuclear power plants produce a large amount of energy for a small mass of fuel.
Nuclear is less expensive.
9 grams of hydrogen gas (H2) will SC Johnson need to react in order to make 1 bottle of Windex.
Explanation:
Balance equation for the formation of ammonia from H2 gas.
N2 + 3H2 ⇒ 2 
Given
mass of ammonia in 1 bottle of windex = 51 gram
atomic mass of ammonia 17.01 gram/mole
number of moles = 
number of moles = 
= 3 moles of ammonia is formed.
in 1 bottle of windex there are 3 moles of ammonia 0r 51 grams of ammonia.
From the equation it can be found that:
3 moles of hydrogen reacted to form 2 moles of ammonia
so, x moles of hydrogen will react to form 3 moles of ammonia.
= 
x = 4.5 moles of hydrogen will be required.
to convert moles into gram formula used:
mass = atomic mass x number of moles (atomic mass of H2 is 2grams/mole)
= 2 x 4.5
= 9 grams of hydrogen.
The enthalpy of vaporization of H2O is higher than the enthalpy of fusion of H2O, therefore vaporizing the same mass of H2O would require more heat/energy than melting the same mass of H2O.