Answer:
See below
Step-by-step explanation:
Alex finally understands how Bob was trying to trick him into winning the bet because of how he puts in the condition for probability being less than 10%. Whichever way the outcome of the coin toss turns out to be, it will be in Bob's favor and Alex will lose the bet. If the coin is flipped 3 times, the probability of having heads exactly twice is 
An equation
what else could it be?
You are asking for the condition needed for the
<span>two segments to be perpendicular to each other. </span>
<span>If the slope of one segment is m, then the slope of a perpendicular segment would be -1/m </span>
<span>this means that m2 = -1/m and so m2 x m = -1 </span>
<span>If you look carefully at your choices, the 3rd answer involves the two slope and has the -1. It's </span>
<span>the correct answer.</span>
Solution for x^2+5x=150 equation:
<span>Simplifying
x2 + 5x = 150
Reorder the terms:
5x + x2 = 150
Solving
5x + x2 = 150
Solving for variable 'x'.
Reorder the terms:
-150 + 5x + x2 = 150 + -150
Combine like terms: 150 + -150 = 0
-150 + 5x + x2 = 0
Factor a trinomial.
(-15 + -1x)(10 + -1x) = 0
Subproblem 1Set the factor '(-15 + -1x)' equal to zero and attempt to solve:
Simplifying
-15 + -1x = 0
Solving
-15 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '15' to each side of the equation.
-15 + 15 + -1x = 0 + 15
Combine like terms: -15 + 15 = 0
0 + -1x = 0 + 15
-1x = 0 + 15
Combine like terms: 0 + 15 = 15
-1x = 15
Divide each side by '-1'.
x = -15
Simplifying
x = -15
Subproblem 2Set the factor '(10 + -1x)' equal to zero and attempt to solve:
Simplifying
10 + -1x = 0
Solving
10 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-10' to each side of the equation.
10 + -10 + -1x = 0 + -10
Combine like terms: 10 + -10 = 0
0 + -1x = 0 + -10
-1x = 0 + -10
Combine like terms: 0 + -10 = -10
-1x = -10
Divide each side by '-1'.
x = 10
Simplifying
x = 10Solutionx = {-15, 10}</span>