Answer:
Low power
Explanation:
Low power would allow for the full image of the red blood cells and would appear as small circles.
Answer : The mass of oxygen formed must be 3.8 grams.
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
As we are given :
The mass of
= 25.3 grams
The mass of
= 23.4 grams
So,



Therefore, the mass of oxygen formed must be 3.8 grams.
I would say false hope that helped
Answer:
0.7g of HCl
Explanation:
First, let us write a balanced equation for the reaction between HCl and Al(OH)3.
This is illustrated below:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
Next, let us obtain the masses of Al(OH)3 and HCl that reacted together according to the equation. This can be achieved as shown below:
Molar Mass of Al(OH)3 = 27 + 3(16+1)
= 27 + 3(17) = 27 + 51 = 78g/mol.
Molar Mass of HCl = 1 + 35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 3 x 36.5 = 109.5g
Now we can obtain the mass of HCl that would react with 0.5g of Al(OH)3. This can be achieved as follow:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
From the equation above,
78g of Al(OH)3 reacted with 109.5g of HCl.
Therefore, 0.5g of Al(OH)3 will react with = (0.5 x 109.5)/78 = 0.7g of HCl
Radioactive is the most penetrating nuclear radiation