Oxygen gas produced : 0.7 g
<h3>Further explanation</h3>
Given
10.0 grams HgO
9.3 grams Hg
Required
Oxygen gas produced
Solution
Reaction⇒Decomposition
2HgO(s)⇒2Hg(l)+O₂(g)
Conservation of mass applies to a closed system, where the masses before and after the reaction are the same
mass of reactants = mass of products
mass HgO = mass Hg + mass O₂
10 g = 9.3 g + mass O₂
mass O₂ = 0.7 g
Answer:
Only two elements are liquid at standard conditions for temperature and pressure: mercury and bromine. Four more elements have melting points slightly above room temperature: francium, caesium, gallium and rubidium.
Explanation:
Answer:
Rate = -1/2 Δ[SO<sub>2</sub>]/Δt
so its gonna be (in more simple terms) rate= -1/2Δ(SO2)/Δt
Explanation:
<u>Analysing the Question:</u>
We are given a 250 mL solution of 0.5M K₂Cr₂O₇
Which means that we have:
0.5 Mole in 1L of the solution
0.125 moles in 250 mL of the solution <em>[dividing both the numbers by 4]</em>
<em />
<u>Mass of K₂Cr₂O₇ in the given solution:</u>
Molar mass of K₂Cr₂O₇(Potassium Dichromate) = 194 g/mol
<em>we know that we have 0.125 moles in the 250 mL solution provided</em>
Mass = Number of moles * Molar mass
Mass = 0.125 * 194
Mass = 36.75 grams
Explanation:
2,3-diethyl hexane
At first we select a long chain.
Then, we number that chain from that side where substituent position is closer.
Then, we write it's IUPAC name
Position of substituent + substituent name + chain name + suffix
Here,
2,3 + -diethyl + hex + -ane
= 2,3-diethyl hexane