Answer:
Distance of 400m.
Explanation:
Use your kinematics equation to solve for distance (we can use kinematics b/c acceleration is constant).
d = (initial velocity x time) + 1/2 at^2
d = (20 x 10) + 1/2 (4) (10)^2
d = 200 + 200
d = 400 m
The value that should be reported for the total mass of three samples of iron will be 0.143 Kg or 143 g
<h3>
What is Mass and Weight ?</h3>
Mass is the quantity of matter. While weight is a gravitational pull on an object. Mass is measured in Kg while weight is measured in Newton.
What value should be reported for the total mass of three samples of iron weighing 117.0 g, 19.43 g, and 6.1043 g?
The total mass will be the sum of the three masses.
The total mass = 117 + 19.43 + 6.1043
The total mass = 142.5343 g
Convert gram to kilogram by dividing the answer by 1000
The total mass = 142.5343/1000
The total mass = 0.1425343 Kg
Therefore, the value that should be reported for the total mass of three samples of iron will be 0.143 Kg or 143 g approximately
Learn more about Mass and Weight here: brainly.com/question/1384116
#SPJ1
The body moves at a velocity of 1.62m/s after the bullet emerges.
<h3>Given:</h3>
Mass of bullet,
= 22g
= 0.022 kg
Mass of the block,
= 1.9 kg
Velocity of bullet ,
= 265 m/s

According to the law of collision which states that the momentum of the body before the collision is equal to the momentum of the body after the collision.
After penetration;


The formula for calculating the collision of a body is expressed as:
p = mv
m is the mass of the body
v is the velocity of the body
∴ Momentum before = Momentum after
Substitute the given parameters into the formula as shown:

Therefore, It moves with a velocity of 1.62 m/s.
Learn more about momentum here:
brainly.com/question/25121535
#SPJ1
The true statements are B and C.
This comes from the following facts:
Even when heat is added to a substance in a change of phase the temperature does not increases since this heat is latent heat.