An inner transition metal (ITM) is one of a group of chemical elements on the periodic table. They are normally shown in two rows below all the other elements. They include elements 57-71 (lanthanides) and 89-103 (actinides).
An initial velocity is:
v o = 25 m/s
The vertical component of the initial velocity:
v o y = v o * sin 60° =
= v o * √3 / 2 = 25 m/s * √3 / 2 = 21.65 m/s
Answer:
The approximate vertical component of the initial velocity is 21.65 m/s.
D. It is personal in style.
-- In order to achieve constant verlocity, the net force on the mass must be zero. So if there ARE any forces acting on it, they must be balanced.
-- There is already a force on the mass that can't be eliminated . . . the force of gravity.
-- That force due to gravity is (mass x gravity) = (25 kg)(9.8 m/s²) = <em><u>245N</u></em> in the <u><em>downward</em></u> direction.
-- In order to 'balance' the forces and make them add up to zero, we have to provide another force of <em>245N</em>, all in the <em>upward</em> direction.
-- Then the forces on the object will be balanced, the NET force on it will be zero, and whichever way you start it moving, it will continue to move at a cornstant verlocity.
Answer:
49.85 V
Explanation:
u = 0, s = 5.62 cm, t = 1.15 x 10^-6 s
Let the electric field is E and voltage is V.
Use second equation of motion
s = ut + 1/2 a t^2
5.62 x 10^-2 = 0 + 0.5 a x (1.15 x 10^-6)^2
a = 8.5 x 10^10 m/s^2
m x a = q x E
E = m x a / q
E = (1.67 x 10^-27 x 8.5 x 10^10) / (1.6 x 10^-19)
E = 887.19 V/m
V = E x s
V = 887.19 x 5.62 x 10^-2 = 49.85 V