According to the net force, the acceleration of the book is 16.47 m/s².
We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as
∑F = m . a
where F is force, m is mass and a is acceleration
From the question above, we know that
m = 3 kg
g = 9.8 m/s²
F1 = 20 N
Find the net force
∑F = F1 + W
∑F = 20 + m . g
∑F = 20 + 3 . 9.8
∑F = 20 + 29.4
∑F = 49.4 N
Find the acceleration
∑F = m . a
49.4 = 3 . a
a = 16.47 m/s²
Find more on force at: brainly.com/question/25239010
#SPJ4
1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.
Answer: The work is 1863 N*m
Explanation:
We can define work as:
W = F*d
Where F is the force that the mover needs to apply to the refrigerator, and d is the distance that the refrigerator is moved.
To move the refrigerator, the minimal force that the mover needs to do is exactly the friction force (In this case, the refrigerator will move with constant speed).
Then we will have:
F = 230 N
and the distance is 8.1 meters, then the work will be:
W = 230N*8.1 m = 1863 N*m
Answer:
10°C
Explanation:
To convert °F to °C, we use the formula:
°C = (°F - 32) * ( 5/9)
So, to convert 50°F to the equivalent in °C, we can proceed as follows:
°C = ( 50 - 32 ) * (5/9)
°C = ( 18 ) * (5/9), which is, approximately,
°C = 9.999999999... ≈ 10 (5/9 ≈0.555555...)
So, 50°F is equivalent to 10°C.
20/9.8 = 2.0 seconds. The ball stops after 2 seconds.