Answer:
a)1.51*10^-22joules b) 1.89*10^-7m
Explanation:
Work done to stop the proton = the kinetic energy of the proton = 1/2 mv^2 = 1/2* 1.67*10^-27* 425*425 = 1.51* 10 ^ -22 joules
b) net force acting to stop the proton = 8.01*10^-16
Work done needed to stop the proton = net force acting opposite the motion * distance
Distance covered = need work done/ net force
Distance = 1.51*10^-22/8.01*10^-16= 1.89*10^-7m
The period will be the same if the amplitude of the motion is increased to 2a
What is an Amplitude?
Amplitude refers to the maximum extent of a vibration or oscillation, measured from the position of equilibrium.
Here,
mass m is attached to the spring.
mass attached = m
time period = t
We know that,
The time period for the spring is calculated with the equation:

Where k is the spring constant
Now if the amplitude is doubled, it means that the distance from the equilibrium position to the displacement is doubled.
From the equation, we can say,
Time period of the spring is independent of the amplitude.
Hence,
Increasing the amplitude does not affect the period of the mass and spring system.
Learn more about time period here:
<u>brainly.com/question/13834772</u>
#SPJ4
Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.
The average power produced by the soccer player is 710 Watts.
Given the data in the question;
- Mass of the soccer player;

- Energy used by the soccer player;

- Time;

Power; 
Power is simply the amount of energy converted or transferred per unit time. It is expressed as:

We substitute our given values into the equation
![Power = \frac{5100000J}{7200s}\\\\Power = 708.33J/s \\\\Power = 710J/s \ \ \ \ \ [ 2\ Significant\ Figures]\\\\Power = 710W](https://tex.z-dn.net/?f=Power%20%3D%20%5Cfrac%7B5100000J%7D%7B7200s%7D%5C%5C%5C%5CPower%20%3D%20708.33J%2Fs%20%5C%5C%5C%5CPower%20%3D%20710J%2Fs%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%202%5C%20Significant%5C%20Figures%5D%5C%5C%5C%5CPower%20%3D%20710W)
Therefore, the average power produced by the soccer player is 710 Watts.
Learn more: brainly.com/question/20953664
Answer:
area = 5733.33 cm²
length = 5.47 ×
cm
Explanation:
Given data
density = 19.32 g/cm³
mass = 33.16 g
thickness = 3.000 µm = 3 ×
cm
radius r = 1.000 µm = 1 ×
cm
to find out
area of the leaf and length of the fiber
solution
we know volume formula that is
volume = mass / density
volume = 33.16 / 19.32
volume = 1.72 cm³
we know that volume = thickness × area
so area
area = volume / thickness
area = 1.72 / 3 ×
area = 5733.33 cm²
and
we know volume = πr²L
so L = volume / πr²
length = 1.72 / π(1×
)²
length = 5.47 ×
cm