Answer:
As each mower presumably needs the same torque to start, and torque is a product of force and moment arm, the longer moment arm of 10.42 cm on Uwi's mower means lower force is required when compared to Urippe's shorter moment arm of 1.35 cm
350 rev/min = 350(2π) / 60 = 36.652 rad/s
36.652 rad/s / 0.294 s = 124.66... <u>125 rad/s²</u>
a = αR = 125(0.1042) = 12.990... <u>13 m/s²</u>
a = αR = 125(0.0135) = 1.68299... <u>1.7 m/s²</u>
I am GUESSING that we are supposed to model these mowers as a uniform disk
τ = Iα
FR = (½mr²)α
F = mr²α/2R
Urippe's pull = (3.56)(0.2041²)(124.66) / (2(0.0135)) = 702.008... <u>702 N</u>
Usi's pull = (3.56)(0.2041²)(124.66) / (2(0.1042)) = 90.9511...<u>91.0 N</u>
L = Iω = (½(3.56)(0.2041²))36.652 = 2.71771...<u>2.72 kg•m²/s down</u>
using the right hand rule
Answer:
A hurricane's spin and the spin's direction is determined by a super-powerful phenomenon called the Coriolis effect. It causes the path of everything from particles in the air to currents in the ocean so they curve as they travel across and over Earth's surfaces.
The answer is cooler. Hope this helps.
Equatorial currents are primarily westward. This is because the dominant current in the northern hemisphere has a clockwise direction, while the southern hemisphere has a counterclockwise direction. When these two currents meet at the equator, a common westward current exists.
The Greek philosopher Aristotle and the Roman Catholic Church also believed the sun revolved around the earth. In 1543, Nicolaus Copernicus<span> published a new theory stating the earth revolves around the sun. This is known as the Copernican theory.</span>