Answer:
To complete the problem statement it is needed:
1.- the volume and weight capacity of the truck, because these will become the constraints.
2.- In order to formulate the objective function we need to have an expression like this:
" How many of each type of crated cargo should the company shipped to maximize profit".
Solution:
z(max) = 175 $
x = 1
y = 1
Assuming a weight constraint 700 pounds and
volume constraint 150 ft³ we can formulate an integer linear programming problem ( I don´t know if with that constraints such formulation will be feasible, but that is another thing)
Step-by-step explanation:
crated cargo A (x) volume 50 ft³ weigh 200 pounds
crated cargo B (y) volume 10 ft³ weigh 360 pounds
Constraints: Volume 150 ft³
50*x + 10*y ≤ 150
Weight contraint: 700 pounds
200*x + 360*y ≤ 700
general constraints
x ≥ 0 y ≥ 0 both integers
Final formulation:
Objective function:
z = 75*x + 100*y to maximize
Subject to:
50*x + 10*y ≤ 150
200*x + 360*y ≤ 700
x ≥ 0 y ≥ 0 integers
After 4 iterations with the on-line solver the solution
z(max) = 175 $
x = 1
y = 1
<h3>
♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫</h3>
➷ 4 parts red pigment = 8(4) parts of base = 32 parts of base
7 parts red pigment = 8(7) parts of base = 56 parts of base
12 parts red pigment = 8(12) parts of base = 96 parts of base
20 parts red pigment = 8(20) parts of base = 160 parts of base
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
If you divide $12.91 by .48, that'll give you 26.89583333... So rounding that brings you to $26.90
Answer: -6.8
Step-by-step explanation:
First you have to find the mean of all the #’s so to do that you will have to add all the #’s up including the negatives and you would get -34, after you do that you will have to divide by 5 and get -6.8