1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
14

49 more than the quotient of an unknown number and 12 is 53. What is the value of the unknown number?

Mathematics
1 answer:
lara [203]3 years ago
4 0
Unknown = x

the quotient of x and 12 is x/12 than 49 more than that is 53,
(x/12)+49=53, now use basic math and solve

-49 from both side,
x/12=4

*12 to both side,
x=48

therefore the unknown number is 48

You might be interested in
Some please help me with this ! What is the slope of the line...
nevsk [136]

Answer:

1

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
5x-(x+1)=5-2x i dont understand what to do. Plz help
Vlada [557]

Answer:

x=1

Step-by-step explanation:

5x-(x+1)=5-2x

distribute

5x-x-1 = 5-2x

4x-1 = 5-2x

add 2x on each side

4x-1+2x = 5-2x+2x

6x -1 = 5

add 1 on each side

6x-1+2 = 5+1

6x = 6

divide by 6

6x/6 = 6/6

x = 1

6 0
3 years ago
Please help <br> graphing
leonid [27]
You have to rotate it around (0,1) by 90 degrees
7 0
3 years ago
Find the sum of the following infinite geometric series.
Crazy boy [7]

Answer:

Final answer is \frac{80}{3}.

Step-by-step explanation:

We have been given an infinite geometric series.

Now we need to find it's sum.

common ratio r=-\frac{1}{5}.

plug n=1 to get the first term

a_n=32\left(-\frac{1}{5}\right)^{\left(n-1\right)}

a_1=32\left(-\frac{1}{5}\right)^{\left(1-1\right)}

a_1=32\left(-\frac{1}{5}\right)^{\left(0\right)}

a_1=32\left(1\right)

a_1=32

Now plug these values into infinite sum formula

S_{\infty}=\frac{a_1}{1-r}=\frac{32}{1-\left(-\frac{1}{5}\right)}=\frac{32}{1.2}=\frac{320}{12}=\frac{80}{3}

Hence final answer is \frac{80}{3}.

8 0
3 years ago
razones y proporciones. un pelotero profesional ha bateado 14 imparables , en 40 turnos al bate . hallar la razón entre las vece
ElenaW [278]

Answer:

El pelotero ha bateado imparables en el 35% de sus intentos.

Step-by-step explanation:

Dado que un pelotero profesional ha bateado 14 imparables en 40 turnos al bate, para hallar la razón entre las veces que ha bateado imparables y los turnos que ha tenido que batear se debe realizar el siguiente cálculo:

14 / 40 = X

0.35 = X

0.35 x 100 = 35

Por lo tanto, el pelotero ha bateado imparables en el 35% de sus intentos.

5 0
3 years ago
Other questions:
  • Julio predicted that the average high temperature for January would be -7°C. The actual average high temperature was 4 degrees h
    12·2 answers
  • The length of a rectangle is 3 meters more than the width. If the perimeter is 170 meters, what are the length and the width?
    14·1 answer
  • 3
    13·1 answer
  • 37.44 +3.79 + 24.1
    12·1 answer
  • C equals 5/9 F32 the nearest whole degree what is the temperature in the degrees Fahrenheit when it is 90 degrees Celsius
    9·1 answer
  • I really need to know this im 2 days behind on math cause of family issues
    8·1 answer
  • Answers for both boxes please ​
    13·1 answer
  • Please help due tomorrow
    11·1 answer
  • HELPPPPPP HELPPPPP ANYONE PLEASEEEEEEE
    14·2 answers
  • Linear Relationships Study Guide 1.) Select all the equations for which (-6, -1) is a solution. Show your work to prove that eac
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!