Gravity is an attractive force that works to pull objects together. If 2 objects are close the gravitational pull will be stronger
Mass and distance determine gravity. The farther two things are away from each other, the weaker the gravitational forces are, the less mass an object has the less gravitational force it exerts
Answer:
2.03 x 10²⁴N
Explanation:
Given parameters:
Mass of moon = 7.34 x 10²²kg
Mass of the earth = 5.97 x 10²⁴kg
Distance = 3.8 x 10⁵km
Unknown:
Gravitational force of attraction = ?
Solution:
To find the gravitational force of attraction between the masses, we use the expression below;
F =
G is the universal gravitation constant
m is the mass
1 and 2 represents moon and earth
r is the distance
F =
F =
= 2.03 x 10²⁴N
Respon
lqiudos ciopatmibes
ly apsamtios ccoriendor sabe r
llpop
io.
Answer:
Option (3)
Explanation:
Nicolaus Copernicus was an astronomer from Poland, who was born on the 19th of February in the year 1473. He played a great role in the field of modern astronomy.
He was the person who contributed to the heliocentric theory. This theory describes the position of the sun in the middle of the universe, and all the planets move around the sun. This theory was initially not accepted, and after about a century it was widely accepted.
This theory describes the present-day motion of the planets around the sun in the solar system. This theory replaced the geocentric theory.
Thus, the correct answer is option (3).
Answer:
I = 8.75 kg m
Explanation:
This is a rotational movement exercise, let's start with kinetic energy
K = ½ I w²
They tell us that K = 330 J, let's find the angular velocity with kinematics
w² = w₀² + 2 α θ
as part of rest w₀ = 0
w = √ 2α θ
let's reduce the revolutions to the SI system
θ = 30.0 rev (2π rad / 1 rev) = 60π rad
let's calculate the angular velocity
w = √(2 0.200 60π)
w = 8.683 rad / s
we clear from the first equation
I = 2K / w²
let's calculate
I = 2 330 / 8,683²
I = 8.75 kg m