You've given the answer, right there in your question.
The "magnitude of gravity" is described in terms of the acceleration
due to it, and you just told us what that is.
We can also notice that the figure you gave is about 0.66 of the
acceleration due to gravity on the Earth's surface. That tells us that
the distance from the Earth's center at that height is about
(1 / √0.66) = 1.23 times
the Earth's radius, so the height is about 910 miles above the surface.
For a reaction to occur, energy must be absorbed to break chemical bonds
<u>Explanation:</u>
Reactions can be classified as chemical reaction, nuclear reaction, thermal reaction. So in these three reaction types, the nature of energy will only be varying.
But in order to execute a reaction, there should be breaking of existing bonds and then formation of new bonds. So for breaking of the bonds of reactants, energy should be absorbed from the surrounding.
Then the extra energy will be released after forming the products. Thus, the process of absorption of energy will lead to endothermic process and the process of releasing of energy will lead to exothermic reaction. So for a reaction to occur, energy must be absorbed to break the chemical bonds.
Answer:
l= 4 mi : width of the park
w= 1 mi : length of the park
Explanation:
Formula to find the area of the rectangle:
A= w*l Formula(1)
Where,
A is the area of the rectangle in mi²
w is the width of the rectangle in mi
l is the width of the rectangle in mi
Known data
A = 4 mi²
l = (w+3)mi Equation (1)
Problem development
We replace the data in the formula (1)
A= w*l
4 = w* (w+3)
4= w²+3w
w²+3w-4= 0
We factor the equation:
We look for two numbers whose sum is 3 and whose multiplication is -4
(w-1)(w+4) = 0 Equation (2)
The values of w for which the equation (2) is zero are:
w = 1 and w = -4
We take the positive value w = 1 because w is a dimension and cannot be negative.
w = 1 mi :width of the park
We replace w = 1 mi in the equation (1) to calculate the length of the park:
l= (w+3) mi
l= ( 1+3) mi
l= 4 mi
Answer:
Yes
Explanation:
There is a position that works better than this and that is switching the sides of the forks.
Hello
Here we must use the equation of motion
v^2 = u^2 + 2as; where v is final velocity, u is initial velocity, a is the acceleratoin and is the distance travelled.
We select this one because the time of collision is unknown to us.
We know the truck stopped so its final velocity is 0; thus v = 0.
Converting the initial velocity to SI units, we get 3.89 m/s.
The distance traveled, s, is 0.062 meters.
Inserting all of these values into the equation,
0 = (3.89)^2 + 2(a)(0.062)
and solving for a, we get a to be
-122.0 ms^(-2)
The negative sign indicates the acceleration is in the opposite direction to the initial motion, which means the truck decelerated. This is consistent with the given condition.