Answer:
169.4 lbs
Step-by-step explanation:
77 * 2.2 = 169.4
Answer:
Total surface area : 733
The shape of the base is a rectangle with sides 11 in. and 12 in.
Step-by-step explanation:
The shape of the base is a rectangle with sides 11 in. and 12 in.
The surface area is the sum of the areas of the 5 sides.
Area of the base = 11*12 = 132
Area of the two triangles = (11*16)/2 = 88
Area of the back rectangle = 192
The theorem of Pitagora to find the oblique side: square root of (11*11 + 16*16)= 19.42 in.
So the area of the oblique face: 19.42* 12 = 233 (almost :) )
So total surface area: 132 + 88*2+192+233= 733 square in
Answer:
(c) 5/2
Step-by-step explanation:
The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
(a^b)/(a^c) = a^(b-c)
a^-b = 1/a^b
__
Using these rules, we can simplify the expression as follows:
(5^-3)(2^2)(5^6)/((2^3)(5^2)) = (5^(-3+6-2))(2^(2-3)) = (5^1)(2^-1)
= 5/2
Answer:
The sequence of transformations that maps ΔABC to ΔA'B'C' is the reflection across the <u>line y = x</u> and a translation <u>10 units right and 4 units up</u>, equivalent to T₍₁₀, ₄₎
Step-by-step explanation:
For a reflection across the line y = -x, we have, (x, y) → (y, x)
Therefore, the point of the preimage A(-6, 2) before the reflection, becomes the point A''(2, -6) after the reflection across the line y = -x
The translation from the point A''(2, -6) to the point A'(12, -2) is T(10, 4)
Given that rotation and translation transformations are rigid transformations, the transformations that maps point A to A' will also map points B and C to points B' and C'
Therefore, a sequence of transformation maps ΔABC to ΔA'B'C'. The sequence of transformations that maps ΔABC to ΔA'B'C' is the reflection across the line y = x and a translation 10 units right and 4 units up, which is T₍₁₀, ₄₎