1/3 of a lap per 1 minute, 3 minutes per lap
Answer:
y-int = (0, -0.5)
x-int = (-1.2, 0)
Step-by-step explanation:
Hope this helps! :3
plz mark as brainlest!
Answer D all of the above
Step-by-step explanation:
Answer:
Yes, it is possible for two boxes to have the same volume, but different surface areas.
Step-by-step explanation:
Answer:

Step-by-step explanation:
Consider the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 2
Let A be the region obtained by projecting the volume(V) onto the xy-plane.
Similarly, the plane 2x + y + z = 2 intersects with the xy-plane in y = 2 - 2x.
Using the vertical strips, the region A is to the xy-plane can be expressed as:

Thus, the volume of the solid can be calculated as follows;


![V = \int^1_0 \bigg [2\times y -2x\times y - \dfrac{y^2}{2} \bigg]^{2-2x}_{0} \ dx \](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5E1_0%20%5Cbigg%20%5B2%5Ctimes%20y%20-2x%5Ctimes%20y%20-%20%5Cdfrac%7By%5E2%7D%7B2%7D%20%5Cbigg%5D%5E%7B2-2x%7D_%7B0%7D%20%5C%20dx%20%5C)
![V = \int^1_0 \bigg [2\times (2-2x) -2x\times (2-2x) - \dfrac{(2-2x)^2}{2} \bigg]\ dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5E1_0%20%5Cbigg%20%5B2%5Ctimes%20%282-2x%29%20-2x%5Ctimes%20%282-2x%29%20-%20%5Cdfrac%7B%282-2x%29%5E2%7D%7B2%7D%20%5Cbigg%5D%5C%20dx)
![V = \int^1_0 \bigg [2x^2-4x+2 \bigg]\ dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5E1_0%20%5Cbigg%20%5B2x%5E2-4x%2B2%20%5Cbigg%5D%5C%20dx)
![V = \bigg [2\dfrac{x^3}{3}-\dfrac{4x^2}{2}+2 x\bigg]^1_0](https://tex.z-dn.net/?f=V%20%3D%20%5Cbigg%20%5B2%5Cdfrac%7Bx%5E3%7D%7B3%7D-%5Cdfrac%7B4x%5E2%7D%7B2%7D%2B2%20x%5Cbigg%5D%5E1_0)
![V = \bigg [2\dfrac{(1)^3}{3}-\dfrac{4(1)^2}{2}+2 (1)-0\bigg]](https://tex.z-dn.net/?f=V%20%3D%20%5Cbigg%20%5B2%5Cdfrac%7B%281%29%5E3%7D%7B3%7D-%5Cdfrac%7B4%281%29%5E2%7D%7B2%7D%2B2%20%281%29-0%5Cbigg%5D)

