Answer:
H₂O
Explanation:
Based electronegativity, water H₂O will have the higher melting point from the given choices. The binding force between hydrogen and oxygen is greater than for the others.
- In group 6, oxygen has the highest electronegativity.
- It pulls the shared electron closer in the bond.
- The high electronegativity between hydrogen and oxygen causes the elevated melting point between the two species.
If you think of it endothermic is when there is energy needed for the reaction to occur and exothermic is when the reaction releases energy
Answer:
24.7 amu
Explanation:
An isotope is when an element can have different number of neutrons but they have same number of protons.
In order to calculate the average atomic mass with the given information do the following operations:
First change de percentages to fractional numbers, divide by 100.
I like to make a table, to organize all data and I believe is easier to understand.
65/100 = 0.65
35/100 = 0.35
% fraction
65.0 0.65
35.0 0.35
total100.0 1
Now multiply each mass with their corresponding fraction
24 (0.65) = 15.6
26 (0.35) = 9.1
% fraction uma uma
65.0 0.65 24 15.6
35.0 0.35 26 9.1
total100.0 1 24.7
Finally you add the resulting mass and the units will be in uma.
15.6+9.1 = 24.7
Therefore the average atomic mass of this element will be 24.7 uma.
Check the table in the document attached
Answer:
Solid is ur answer
Explanation:
Stay safe, stay healthy and blessed.
Have a great day !
Thank you
Answer:
0.32 M
Explanation:
Step 1: Write the balanced reaction at equilibrium
Ag₂S(s) ⇌ 2 Ag⁺(aq) + S²⁻(aq)
Step 2: Calculate the concentration of Ag⁺ at equilibrium
We will use the formula for the concentration equilibrium constant (Keq), which is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species.
Keq = [Ag⁺]² × [S²⁻]
[Ag⁺] = √{Keq / [S²⁻]}
[Ag⁺] = √{2.4 × 10⁻⁴ / 0.0023} = 0.32 M