The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa
Answer:
6) λ = 0.84 × 10⁻⁸ m
7) λ = 0.84 × 10⁻⁶ m
Explanation:
6) Given data:
Wavelength of photon = ?
Frequency of photon = 3.56 × 10¹⁶ Hz
Solution:
Formula:
Speed of radiation = frequency × wavelength
c = speed of wave = 3×10⁸ m/s
by putting values,
3×10⁸ m/s = 3.56 × 10¹⁶ Hz × λ
λ = 3×10⁸ m/s / 3.56 × 10¹⁶ s⁻¹
λ = 0.84 × 10⁻⁸ m
7) Given data:
Wavelength of photon = ?
Frequency of photon = 6.15 × 10¹⁴ Hz
Solution:
Formula:
Speed of radiation = frequency × wavelength
c = speed of wave = 3×10⁸ m/s
by putting values,
3×10⁸ m/s = 6.15 × 10¹⁴ Hz × λ
λ = 3×10⁸ m/s / 6.15 × 10¹⁴ Hz s⁻¹
λ = 0.84 × 10⁻⁶ m
Thank you for posting your question here at brainly.
E = mc^2
<span>where E is the energy in joules, </span>
<span>m is the mass in kilograms, </span>
<span>and c is the speed of light. </span>
<span>E = mc^2 </span>
<span>E = (5.63 x 10^-7 kg)(3 x 10^8 m/s)^2 </span>
<span>E = 5.07 x 10^10 J </span>
You just need to say how the pressure affects the glass