Tsunami Waves or option B would be your answer.
The initial speed of the shot is 15.02 m/s.
The Shot put is released at a height y<em> </em>from the ground with a speed u. It is released at an angle θ to the horizontal. In a time t, the shot put travels a distance <em>R</em> horizontally.
Pl refer to the attached diagram.
Resolve the velocity u into horizontal and vertical components, u ₓ=ucosθ and uy=u sinθ. The horizontal component remains constant in the absence of air resistance, while the vertical component varies due to the action of the gravitational force.
Write an expression for R.

Therefore,

In the time t, the net displacement of the shotput is y in the downward direction.
Use the equation of motion,

Substitute the value of t from equation (1).

Substitute -2.10 m for y, 24.77 m for R and 38.0° for θ and solve for u.

The shot put was thrown with a speed 15.02 m/s.
The collapsed answer of Penchalreddy Badepalli is correct. The composition of two reflections via two mirror making an angle \alpha is equivalent to a single rotation by an angle 2\alpha, hence 2 * 60 deg = 120 deg. And turns is independent of the absolute orientation of the two mirrors in space and/or the direction of incidence of the incoming ray.
One could use elementary geometry to prove this (if you presume the direction of incidence is irrelevant imagine hitting the first mirror at 90 deg, then going retro right back along the normal to the first mirror, and follow the directions).
<h3><u>Answer</u>;</h3>
1600 years
<h3><u>Explanation</u>;</h3>
- Half life is the time taken for a radioactive isotope to decay by half of its original amount.
- We can use the formula; N = O × (1/2)^n ; where N is the new mass, O is the original amount and n is the number of half lives.
- A sample of radium-226 takes 3200 years to decay to 1/4 of its original amount.
Therefore;
<em>1/4 = 1 × (1/2)^n</em>
<em>1/4 = (1/2)^n </em>
<em>n = 2 </em>
Thus; <em>3200 years is equivalent to 2 half lives.</em>
<em>Hence, the half life of radium-226 is 1600 years</em>