<em><u>Observe the pattern it follows:</u></em>
7....10....16......28
3. 6. 12
<em><u>The</u></em><em><u> </u></em><em><u>numbers</u></em><em><u> </u></em><em><u>added</u></em><em><u> </u></em><em><u>each</u></em><em><u> </u></em><em><u>time</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>doubled</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>see</u></em><em><u>.</u></em>
<em><u>therefore</u></em><em><u>:</u></em>
<em><u>7</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>1</u></em><em><u>0</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>1</u></em><em><u>6</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>2</u></em><em><u>8</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>5</u></em><em><u>2</u></em>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>3. 6. 12. 24
<em><u>Hope</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>helped</u></em><em><u> </u></em><em><u>you</u></em><em><u>!</u></em>
Answer:
3/7
Step-by-step explanation:
Opposite sides on a parallelogram are parallel, and parallel lines have the same slope, so once we find the slope of AB, we'll know the slope of CD. Point A is (-1,6) and point B is (6,9), so the slope of AB (and by extension, CD) is

Answer:
See the explanation.
Step-by-step explanation:
We are given the function f(x) = x² + 2x - 5
Zeros :
If f(x) = 0 i.e. x² + 2x - 5 = 0
The left hand side can not be factorized. Hence, use Sridhar Acharya formula and
and
⇒ x = -3.45 and 1.45
Y- intercept :
Putting x = 0, we get, f(x) = - 5, Hence, y-intercept is -5.
Maximum point :
Not defined
Minimum point:
The equation can be expressed as (x + 1)² = (y + 5)
This is an equation of parabola having the vertex at (-1,-5) and axis parallel to + y-axis
Therefore, the minimum point is (-1,-5)
Domain :
x can be any real number
Range:
f(x) ≥ - 6
Interval of increase:
Since this is a parabola having the vertex at (-1,-5) and axis parallel to + y-axis.
Therefore, interval of increase is +∞ > x > -1
Interval of decrease:
-∞ < x < -1
End behavior :
So, as x tends to +∞ , then f(x) tends to +∞
And as x tends to -∞, then f(x) tends to +∞. (Answer)