Answer:
Specific heat of calcium carbonate(C) = 0.82 (Approx)
Explanation:
Given:
Energy absorbs (q) = 85 J
Change in temperature (Δt) = 34.9 - 21 = 13.9°C
Mass of calcium carbonate = 7.47 g
Find:
Specific heat of calcium carbonate(C)
Computation:
Specific heat of calcium carbonate(C) = q / m(Δt)
Specific heat of calcium carbonate(C) = 85 / (7.47)(13.9)
Specific heat of calcium carbonate(C) = 85 / 103.833
Specific heat of calcium carbonate(C) = 0.8186
Specific heat of calcium carbonate(C) = 0.82 (Approx)
The solution would be like this for this specific problem:
<span>Given:
H2 = </span><span>2.6 atm
CL2 = 3.14 atm</span>
<span>
pressure H2 = 2.6 - x
pressure Cl2 = 3.14 - x
<span>pressure HBr = 2x = 1.13
x = 1.13 / 2 = 0.565
<span>pressure H2 = 2.6 - 0.565 = 2.035
pressure Br2 = 3.14 - 0.565 = 2.575
Kp = (1.13)^2 / 2.035 x 2.575</span></span></span>
= 1.2769 / (5.240125)
= 0.24367739319195629875241525726963
= 0.244
<span>Therefore, the Kp for the reaction at the given temperature
is 0.244.
To add, </span>the hypothetical pressure of a gas if
it alone occupied the whole volume of the original mixture at the same
temperature is called the partial pressure or Kp.
Answer:
first
Explanation:
Assets = Equity + Liability. ...
Assets = Liabilities + Shareholder's Equity.
then ans will be in your feet it's east
Answer:
1.53 atm
Explanation:
From the question given above, the following data were obtained:
Volume = constant
Initial pressure (P₁) = stp = 1 atm
Initial temperature (T₁) = 273 K
Final temperature (T₂) = 144 °C = 144 °C + 273 = 417 K
Final pressure (P₂) =?
Since the volume is constant, the final pressure can be obtained as follow:
P₁ / T₁ = P₂ / T₂
1 / 273 = P₂ / 417
Cross multiply
273 × P₂ = 417
Divide both side by 273
P₂ = 417 / 273
P₂ = 1.53 atm
Therefore, the final pressure (i.e the pressure inside the hot water bottle) is 1.53 atm.
Answer : S) 33.2 °C
Explanation : When the equal amounts of gases are placed in identical containers but subjected to different temperatures would exert pressure in different amount which will in turn increase the rate of collision between the molecules of gas.
So, when the temperature is increased to maximum greater amount of force would be exerted and the gas molecules will collide with a larger force. Hence the answer will be as the highest temperature i.e. 33.2 °C