Answer:

Explanation:
Ag₂CO₃(s) ⇌2Ag⁺(aq) + CO₃²⁻(aq); Ksp = 8.10 × 10⁻¹²
2x 0.007 50 + x
![K_{sp} =\text{[Ag$^{+}$]$^{2}$[CO$_{3}^{2-}$]} = (2x)^{2}\times 0.00750 = 8.10 \times 10^{-12}\\0.0300x^{2} = 8.10 \times 10^{-12}\\x^{2} = 2.70 \times 10^{-10}\\x = \sqrt{2.70 \times 10^{-10}} = \mathbf{1.64\times 10^{5}} \textbf{ mol/L}\\\text{The maximum concentration of Ag$^{+}$ is $\large \boxed{\mathbf{1.64\times 10^{-5}}\textbf{ mol/L }}$}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5E%7B2%7D%24%5BCO%24_%7B3%7D%5E%7B2-%7D%24%5D%7D%20%3D%20%282x%29%5E%7B2%7D%5Ctimes%200.00750%20%3D%208.10%20%5Ctimes%2010%5E%7B-12%7D%5C%5C0.0300x%5E%7B2%7D%20%3D%208.10%20%5Ctimes%2010%5E%7B-12%7D%5C%5Cx%5E%7B2%7D%20%3D%202.70%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cx%20%3D%20%5Csqrt%7B2.70%20%5Ctimes%2010%5E%7B-10%7D%7D%20%3D%20%5Cmathbf%7B1.64%5Ctimes%2010%5E%7B5%7D%7D%20%5Ctextbf%7B%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20maximum%20concentration%20of%20Ag%24%5E%7B%2B%7D%24%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.64%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%20%7D%7D%24%7D)
Answer:
- Empirical:

- Molecular:

Explanation:
Hello,
In this case, based on the information regarding the combustion, the moles of carbon turn out:

Moreover, the moles of hydrogen:

Thus, the subscripts of carbon and hydrogen in the hydrocarbon turn out:

Now, looking for a suitable whole number we obtain the following empirical formula as 2.335 times 3 is 7 for hydrogen:

In such a way, that compound has a molar mass of 43 g/mol, thus, the whole compound's molar mass is 86.18 g/mol for which the molecular formula is twice the empirical one, therefore:

Which is hexane.
Best regards.
I don't understand the question
Can you elaborate further
A mole is equal to 6.02x10^23, so one mole of H2O has 6.02x10^23 water molecules. To get how many of them are in 6 moles you need to multiple it by six:
(6.02x10^23)x6= 3.612x10^24
So, there’s 3.612x10^24 water molecules in 6 moles of water
Answer:
The retention factor of an ion is 0.10 .
Explanation:
Retention factor is defined as ratio of distance of distance traveled by solute to the distance traveled by solvent on chromatogram.

We have:


The retention factor of an ion :
