Answer: don't know sorry
Step-by-step explanation:
Answer with Step-by-step explanation:
We are given S be any set which is countable and nonempty.
We have to prove that their exist a surjection g:N
Surjection: It is also called onto function .When cardinality of domain set is greater than or equal to cardinality of range set then the function is onto
Cardinality of natural numbers set =
( Aleph naught)
There are two cases
1.S is finite nonempty set
2.S is countably infinite set
1.When S is finite set and nonempty set
Then cardinality of set S is any constant number which is less than the cardinality of set of natura number
Therefore, their exist a surjection from N to S.
2.When S is countably infinite set and cardinality with aleph naught
Then cardinality of set S is equal to cardinality of set of natural .Therefore, their exist a surjection from N to S.
Hence, proved
Answer:
= 98 + 7c or = 7(14+c)
Step-by-step explanation:
7(6+c+8)
7*6 + 7c + 7*8
= 42 + 7c + 56
= 98 + 7c
= 7(14+c)