<span>In this problem, we need to solve for Bubba’s mass. To do this, we let A be the area of the raft and set the weight of the displaced fluid with the raft alone as ρwAd1g and ρwAd2g with the person on the raft, </span>where ρw is the density of water, d1 = 7cm, and d2= 8.4 cm. Set the weight of displaced fluid equal to the weight of the floating objects to eliminate A and ρw then solve for m.
<span>ρwAd1g = Mg</span>
ρw<span>Ad2g = (M + m) g</span>
<span>d2∕d1 = (M + m)/g</span>
m = [(d2<span>∕d1)-1] M = [(8.4 cm/7.0 cm) - 1] (600 kg) =120 kg</span>
This means that Bubba’s mass is 120 kg.
The moon is made up mostly of Silicates, hope this answer helps.
Answer:
The final graph
Explanation:
The graph that curves downwards is negative acceleration. While the position decreases the slop increases.
The age of a man whose normal blood pressure measures 123 mm of hg
9 years
<h3>What is Quadratic equation ?</h3>
A quadratic equation as an equation of degree 2, meaning that the highest exponent of this function is 2. The standard form of a quadratic equation is y = a
+ bx + c, where a, b, and c are numbers and a cannot be 0
P(A) = 0.006
- 0.02a + 120
123 = 0.006- 0.02a + 120
0=0.006
- 0.02a - 3
you can use the quadratic equation formula to solve for the man's age.
A = (-b ± (
) ) / (2a)
A = (0.02 ±
/ (2*0.006)
A = (0.02 ±
) / 0.012
A = 9 , -5.67
Age of the man will be 9 years
To learn more about quadratic equation here
brainly.com/question/17177510?referrer=searchResults
#SPJ4
a) 10 m/s
b) 25 m
Explanation:
a)
The body is moving with a constant acceleration, therefore we can solve the problem by using the following suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
t is the time
For the body in this problem:
u = 0 (the body starts from rest)
is the acceleration
t = 5 s is the time
So, the final velocity is

b)
In this second part, we want to calculate the distance travelled by the body.
We can do it by using another suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
s is the distance travelled
Here we have
u = 0 (the body starts from rest)
is the acceleration
v = 10 m/s is the final velocity
Solving for s,
