Answer:1 because
Explanation: it’s pointing to the earth and gravity
Pulls things down to earth
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
the height of the building is H=36 m.
<h3>What is The Law of Gravity?</h3>
According to Newton's law of gravity, every particle of matter in the universe is attracted to every other particle with a force that varies directly as the product of their masses and inversely as their distance from one another.
Properties of Gravity -
- It is a universal attractive force. It is directly proportional to the product of the masses of the two bodies.
- It obey inverse square law.
- It is the weakest force known in nature.
Examples of Gravity -
- The force that holds the gases in the sun.
- The force that causes a ball you throw in the air to come down again.
- The force that causes a car to coast downhill even when you aren't stepping on the gas.
v₀=0 m/s
H₀=0 m
g=10 m/s²
t=7,2 s
H - ?

H = 0 +0 × 7.2 + 10(7.2)²/2
H = 36m
to learn more about Gravity go to - brainly.com/question/12528243
#SPJ4
What do you mean? I'm confused... You need to put the rest of the question
Answer:
T = 2.83701481512 seconds
Explanation:
Hi!
The formula that you will want to use to solve this question is:
T--> period
L --> length of the pendulum
g --> acceleration due to gravity (9.8m/s^2)
since we know that the mass of the bob at the end of the pendulum does not affect the period of the pendulum, we can go ahead and ignore that bit of information (unless, of course, the weight causes the pendulum to stretch)
so now we can plug in our given info into the formula above and solve!
T = 2*pi * sqrt(2/9.8)
T = 2.83701481512 seconds
*Note*
- I used 3.14 to pi, if you need to use a different value for pi (a longer version, etc) your answer will be slightly different
I hope this helped!