Answer:
c
Explanation:
force is how hard it is pulled or pushed
Answer:a) P = Po + rho×h×g
b) P = 5.4 × 10^9 pa
c) F = P/A = (Po + rho×h×g)/A
d) 1.174×10^11N
Explanation: Using the formula
P = Po + rho×h×g
P = 1.0 x 10^5 + 1000 × 5.5 × 9.81
P = 5.4 × 10^9pa
The magnitude of the force exerted by water on the top of the person's head F at the depth h in terms of P
F = P/A = (Po + rho×h×g)/A
Using the above formula
Where A = 0.046m^2
F = P/ A = 5.4×10^9/0.046
F = 1.174×10^11N
Answer:
= 1.7 cm
Explanation:
The magnification of the compound microscope is given by the product of the magnification of each lens
M = M₀
M = - L/f₀ 25/
Where f₀ and
are the focal lengths of the lens and eyepiece, respectively, all values in centimeters
In this exercise they give us the magnification (M = 400X), the focal length of the lens (f₀ = 0.6 cm), the distance of the tube (L = 16 cm), let's look for the focal length of the eyepiece (
)
= - L / f₀ 25 / M
Let's calculate
= - 16 / 0.6 25 / (-400)
= 1.67 cm
The minus sign in the magnification is because the image is inverted.
= 1.7 cm
<h2>Greetings!</h2>
To find this value, you need to remember the speed formula:
3 = 6 / 2
Speed = distance ÷ time
Rearrange to make distance the subject:
Distance = speed * time
Simply plug these values into this:
5.6 * 8.25 = 46.2
<h3>So the player will travel 46.2 metres!</h3>
<h2>Hope this helps!</h2>
Let us situate this on the x axis, and let our uniform line of charge be positioned on the interval <span>(−L,0]</span> for some large number L. The voltage V as a function of x on the interval <span>(0,∞)</span> is given by integrating the contributions from each bit of charge. Let the charge density be λ. Thus, for an infinitesimal length element <span>d<span>x′</span></span>, we have <span>λ=<span><span>dq</span><span>d<span>x′</span></span></span></span>.<span>V(x)=<span>1/<span>4π<span>ϵ0</span></span></span><span>∫line</span><span><span>dq/</span>r</span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>∫<span>−L</span>0</span><span><span>d<span>x/</span></span><span>x−<span>x′</span></span></span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>(ln|x+L|−ln|x|)</span></span>