To solve this problem we must apply the concepts related to Tangential Acceleration based on angular velocity and acceleration, and therefore, we must also calculate angular velocity based on the given frequency. For all these problems we will take the Units to the International System. The maximum acceleration would then be defined as,

Here,
= Angular velocity
A = Amplitude
At the same time the angular velocity is described as,

Here f means the frequency of the wave. Substituting,




Replacing at the first equation,


Therefore the maximum particle acceleration for a point on the string is 
My best hobby is driving. Driving has something to do with Newton's first law of motion, which states that an object will continue to be in its state of rest or in uniform motion in a straight line unless it is acted upon by an external force. This law means that an object will continue to be in motion in the same direction unless it is acted upon by a force. Newton's first law of motion is also called the law of inertia.
I usually experience the law of inertia when I am driving my car.
Every morning, for me to move the car from its state of rest to a state of uniform motion, I have to switch on the ignition, which represent an unbalanced force that move the car out of its states of rest. When I am driving, the car continue in motion and in the same direction, unless I apply the brake. The application of the brake is an example of applying an unbalanced force to stop a body in motion.
The branch of science that studies this is physics
<span />
The speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Given the data in the question;
Since the brick was initially at rest before it was dropped,
- Initial Velocity;

- Height from which it has dropped;

- Gravitational field strength;

Final speed of brick as it hits the ground; 
<h3>Velocity</h3>
velocity is simply the same as the speed at which a particle or object moves. It is the rate of change of position of an object or particle with respect to time. As expressed in the Third Equation of Motion:

Where v is final velocity, u is initial velocity, h is its height or distance from ground and g is gravitational field strength.
To determine the speed of the brick as it hits the ground, we substitute our giving values into the expression above.

Therefore, the speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Learn more about equations of motion: brainly.com/question/18486505
Newton's first law of motion is sometimes called the law of inertia. When the forces acting on an object are balanced, the object is either at rest or moving with a constant velocity. Unbalanced forces can cause an object to accelerate or decelerate. Unbalanced forces can also cause an object to change direction.
Hope that helps!