Answer:
1 eV
Explanation:
Given:
Work function, ∅ = 2.00 eV
Kinetic energy of the ejected of the electron, K.E = 4.0 eV
Now,
using the photoelectric equation
, we have
Energy of the photon (E) = ∅ + K.E
also,
E = hc/λ
where, h is plank's constant
c is the speed of the light
λ is the wavelength
thus, we have
hc/λ = 2 + 4 = 6 eV
Energy of photon = 6eV
Now,
for the second case
λ' = 2λ
when Wavelength is doubled , E is halved
thus,
E' = hc/λ'
or
E' = hc/2λ
or
E' = E/2 = 6/2 = 3 eV
also,
E' = ∅ + KE
'
thus on substituting the values,
3 = 2 + KE'
or
KE' = 1 eV
Hence, the maximum kinetic energy for the second case is 1 eV
Answer:
Therefore the terminal velocity = 1.45 m/s
Explanation:
Terminal velocity: Terminal velocity is the highest velocity of an object when it falls from rest trough a media.

= terminal velocity
w = weight of the object = mg
= drag coefficient=0.80
A= frontal area
= media density = 1.2 kg/m³
m = mass = 8 kg
g= acceleration due to gravity = 9.8 m/s²
Front area = length× breadth
= (18×47)cm²
=846 cm²
Therefore the terminal velocity

=1.45 m/s
Therefore the terminal velocity = 1.45 m/s
Answer:
In an inductive circuit, when frequency increases, the circuit current decreases and vice versa.
Explanation:
C. Elements
elements are found in periodic table (in 1 box)