Answer:
what is this a riddle lol it breaks when he either jumps or lands
Explanation:
Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA
Objects can have the same mass (but different <span>compositions). Only mass or volume cannot tell you if the object is solid or vo</span>lumes) or same volume (but different masses)
Answer:
(A) ratio of electric force to weight will be 
(b) Electric field will be 
Explanation:
We have given mass of bee = 100 mg = 
Charge on bee 
Electric field E = 100 N/C
Weight of the bee 
Electric force on the bee 
So the ratio of electric force on the bee and weight is 
(B) To hold the bee in air electric force must be equal to weight of bee
So 


is the acceleration of the box.
<u>Explanation:</u>
Given data:
Mass of the box = 3.74 kg
Flat friction-less ground is pulled forward by a 4.20 N force at a 50.0 degree angle and pulled back by a 2.25 N force at a 122 degree angle.
First, we need to find the net horizontal force acting on the box. With the given data, the equation can be formed as below. Net horizontal force acting on the box (F) is given by


F = 2.699676 – 1.192275 = 1.507 N
Next, find acceleration of the box using Newton's second law of motion. This states that the link between mass (m) of an objects and the force (F) required to accelerate it. The equation can be given as

