1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
14

A 60 kilogram student jumps down from a laboratory counter. At the instant he lands on the floor hus speed is 3 meters per secon

d. If the student stops in .2 second what is thw average force of floor on the student
Physics
1 answer:
erastovalidia [21]3 years ago
5 0

As per Newton's law rate of change in momentum is net force

so we can write it as

F = \frac{dP}{dt}

F = \frac{m(v_f - v_i)}{\Delta t}

now we know that

m = 60 kg

v_f = 3 m/s

v_i = 0

\Delta t= 0.2 s

from above equation

F = \frac{60(3 - 0)}{0.2} = 900 N

so he will experience 900 N force in above case

You might be interested in
Initially a car accelerates at 2 m/s2 for x seconds. The car then travels at a velocity of -6 m/s for x seconds. If the car disp
Luda [366]

Answer:

The time travel is

t=8 s

Explanation:

a= 2 \frac{m}{s^{2} } \\v=-6 \frac{m}{s} \\x=16m

x_{f}=x_{o}+v_{o}*t+\frac{1}{2} *a*t^{2}

x_{f}=0-6*t+\frac{1}{2} *2*t^{2}

t^{2}-6*t-16=0\\ using :\\\frac{-b+/-\sqrt{b^{2}-4*c*a } }{2} \\\frac{-(-6)+/-\sqrt{(-6)^{2}-4*(-16)*(1) } }{2}=\frac{3}{2} +/- \frac{10}{2} \\t_{1} = 2s \\t_{2} = 8s

Check

t_{2}=8s

x_{f}=x_{o}+v_{o}*t+\frac{1}{2} *a*t^{2}

x_{f}=0-6*+\frac{1}{2} *2*8^{2}

x_{f}=-48+64\\x_{f}=16

5 0
3 years ago
A boy on a bicycle drags a wagon full of newspapers at 0.80 m/s for 30 min (1800 s) using a force of 40 N. How much work has the
Eva8 [605]

Answer:

N133A

Explanation:black

8 0
2 years ago
Whats is the resistance of a bulb with a current of 60a in a circuit with a 12v battery
lara [203]

Answer:

60a in a circuit with a 12v battery

Explanation:

60a in a circuit with a 12v battery

6 0
2 years ago
A frictionless piston–cylinder device contains 7 kg of nitrogen at 100 kPa and 250 K. Nitrogen is now compressed slowly accordin
lora16 [44]

Answer: -1038.8 kJ

Explanation:

From the question, we can see that PV^n = constant. And as such, we can deduce that it is a polytropic process. Thus, we can use the polytropic work equation to calculate the needed work input.

from the question we were given

Mass of nitrogen, m = 7kg

initial temperature, T1 = 250k

Final temperature, T2 = 450k

Polytropic index, n = 1.4

Specific gas constant, R = 0.2968kJ/kgK

W = [p2 * v2 - p1 * v1] / 1 - n

W = [m * R * T2 - T1] / 1 - n

W = 7*0.2968*(450 - 250)] / 1 - 1.4

W = [7*0.2968*200] / -0.4

W = 415.52 / -0.4

W = -1038.8 kJ

5 0
3 years ago
1. An object on Earth and the same object on the Moon would have a difference in
Feliz [49]

Answers: (1) a. weight, (2)b. Force changes by 2/9, (3)b. movement, (4)a. 40,000 Joules, (5)c. the soil will be 5°C.

<h2>Answer 1: a. weight</h2>

Mass and weight are very different concepts.  

Mass is the amount of matter that exists in a body, which only depends on the quantity and type of particles within it. This means mass is an intrinsic property of each body and remains the same regardless of where the body is located.  

On the other hand, weight is a measure of the gravitational force acting on an object and is directly proportional to the product of the mass m of the body by the acceleration of gravity g:  

W=m.g  

Then, since the Earth and the Moon have different values ​​of gravity, t<u>he weight of an object in each place will vary</u>, but its mass will not.

<h2>Answer 2: b. Force changes by 2/9</h2>

According to the law of universal gravitation, which is a classical physical law that describes the gravitational interaction between different bodies with mass:  

F=G\frac{m_{1}m_{2}}{r^2} (1)

Where:  

F is the module of the force exerted between both bodies  

G is the universal gravitation constant

m_{1} and m_{2} are the masses of both bodies.

r is the distance between both bodies

If we double the mass of one object (for example 2m_{1}) and triple the distance between both (for example 3r). The equation (1) will be rewritten as:

F=G\frac{2m_{1}m_{2}}{(3r)^2} (2)

F=\frac{2}{9}G\frac{m_{1}m_{2}}{r^2} (3)

If we compare (1) and (2) we will be able to see the force changes by 2/9.

<h2>Answer 3: b. movement</h2>

The Work W done by a Force F refers to the release of potential energy from a body that is <u>moved</u> by the application of that force to overcome a resistance along a path.  

When the applied force is constant and <u>the direction of the force and the direction of the movement are parallel,</u> the equation to calculate it is:  

W=(F)(d)

Now, <u>when they are not parallel, both directions form an angle</u>, let's call it \alpha. In that case the expression to calculate the Work is:  

W=Fdcos{\alpha}

Therefore, pushing on a rock accomplishes no work unless there is movement (independently of the fact that movement is parallel to the applied force or not).

<h2>Answer 4: a. 40,000 Joules</h2>

The Kinetic Energy is given by:

K=\frac{1}{2}mV^{2}   (4)

Where m is the mass of the body and V its velocity

For the first case (kinetic energy K_{1}=10000J  for a car at V_{1}=30 mph=13.4112m/s):

K_{1}=\frac{1}{2}mV_{1}^{2}   (5)

Finding m:

m=\frac{2K_{1}}{V_{1}^{2}}   (6)

m=\frac{2(10000J)}{(13.4112m/s)^{2}}   (7)

m=111.197kg   (8)

For the second case (unknown kinetic energy K_{2}  for a car with the same mass at V_{2}=60 mph=26.8224m/s):

K_{2}=\frac{1}{2}mV_{2}^{2}   (9)

K_{2}=\frac{1}{2}(111.197kg)(26.8224m/s)^{2}   (10)

K_{2}=40000J   (11)

<h2>Answer 5: c. the soil will be 5°C</h2>

The formula to calculate the amount of calories Q is:

Q=m. c. \Delta T   (12)

Where:

m  is the mass

c  is the specific heat of the element. For water is c_{w}=1 kcal/g\°C  and for soil is c_{s}=0.20 kcal/g\°C  

\Delta T  is the variation in temperature (the amount we want to find for both elements)

This means we have to clear \Delta T from (12) :

\Delta T=\frac{Q}{m.c}   (13)

For Water:

\Delta T_{w}=\frac{Q_{w}}{m_{w}.c_{w}}   (14)

\Delta T_{w}=\frac{1kcal}{(1kg)(1 kcal/g\°C)}   (15)

\Delta T_{w}=1\°C)}   (16)

For Soil:

\Delta T_{s}=\frac{Q_{s}}{m_{s.c_{s}}   (17)

\Delta T_{s}=\frac{1kcal}{(1kg)(0.20 kcal/g\°C)}   (18)

\Delta T_{s}=5\°C)}   (19)

Hence the correct option is c.

5 0
3 years ago
Read 2 more answers
Other questions:
  • A green light is submerged 2.70 m beneath the surface of a liquid with an index of refraction 1.31. What is the radius of the ci
    5·1 answer
  • How much do you have to increase the vertical distance to double the impact speed of an object?
    15·1 answer
  • What is the reason that a fixed pulley makes work easier
    12·2 answers
  • When water vapor is cooled it three forms into water droplets why does this represent a conservation in mass
    10·1 answer
  • The two strength factors that relate to all three competitive forces are
    13·1 answer
  • One of the 64.3-cm-long strings of an ordinary guitar is tuned to produce the note LaTeX: B_3B 3 (frequency 245 Hz) when vibrati
    15·1 answer
  • Please help!! I will give brainliest!
    14·1 answer
  • A 0.55 kg projectile is launched from the edge of a cliff with an initial kinetic energy of 1550 J and at its highest point is 1
    10·1 answer
  • What advantages do space telescopes have over Earth telescopes?
    6·2 answers
  • If a rock weighing 3.5 newtons is resting on cliff's ledge 12 meters from the canyon floor, what is its potential energy?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!