Answer:
(a) 62.69 nJ/m^3
(b) 1015.22 μJ/m^3
Explanation:
Electric field, E = 119 V/m
Magnetic field, B = 5.050 x 10^-5 T
(a) Energy density of electric field = 
= 6.269 x 10^-8 J/m^3 = 62.69 nJ/m^3
(b) energy density of magnetic field = 

= 1.01522 x 10^-3 J/m^3 = 1015.22 μJ/m^3
Answer:
B.) by interfering with sound waves
Explanation:
As we know that the interference of sound waves is of two types
1). constructive interference
2). destructive interference
now we know that constructive interference means the resultant intensity will be more than the intensity of interfering waves as here two waves are in same phase.
In destructive interference the resultant of two waves is given by the minimum resultant of the intensity as here the phase of two waves are opposite to each other.
So we will say that

here in case of noise cancelling headphones we know that the phase of noise is always made in opposite phase with the sound which is used to cancelled the noise.
This will reduce the noise and we will get a clear sound
Complete Question
The complete question is shown on the first uploaded image
Answer:
The velocity is
in positive x -direction
The speed is 
Explanation:
From the question we are told that
The distance from the house to truck is D = 20 m
The distance traveled back to retrieve wind-blown hat is d = 15
The distance from the wind-blown hat position too the truck is k = 20 m
The total time taken is t = 75 s
Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative
Generally Justin's displacement is mathematically represented as

=> 
Generally the average velocity is mathematically represented as

=> 
=>
Generally the distance covered by Justin is mathematically represented as

=> 
=> 
Generally Justin's average speed over a 75 s period is mathematically represented as

=> 
=> 
Answer: Homogenous mixture.
Explanation:
Forces<span> that are equal in size but opposite in direction are called </span>balanced forces<span>. </span>Balanced forces<span> do not cause a change in motion. When </span>balanced forces act on an object<span> at rest, the </span>object<span> will not move. If you push against a wall, the wall pushes back with an equal but opposite </span><span>force</span>