The weight is not coming from the center of the mass because the force that act on it is not is equal is side.(2) section B donot have weight because the ruler bend down and section be raise up so no weight.
Answer:
The total charge Q of the sphere is
.
Explanation:
Given that,
Radius = 5 cm
Charge density 
We need to calculate the total charge Q of the sphere
Using formula of charge

Where,
= charge density
V = volume
Put the value into the formula

Put the value into the formula


Hence, The total charge Q of the sphere is
.
<span>A fence runs all the way around the house but never moves.</span>
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25