Absolute zero is not about numbers. It's about temperature, and the
motion of molecules in gases.
You know that the temperature we feel with our skin is the result of the
average speed of all the tiny molecules zipping around or vibrating in
the solid, liquid, or gas.
The faster they're all moving, the warmer the substance feels to us.
The slower they're all moving, the cooler the substance feels to us.
When molecules slow down to zero and lose all of their kinetic energy,
that temperature is what we call 'absolute zero' ... if they're not moving
at all, then they can't move any slower.
They communicate their result to the scientific community- so to speak
The magnitude of the induced emf is given by:
ℰ = |Δφ/Δt|
ℰ = emf, Δφ = change in magnetic flux, Δt = elapsed time
The magnetic field is perpendicular to the loop, so the magnetic flux φ is given by:
φ = BA
B = magnetic field strength, A = loop area
The area of the loop A is given by:
A = πr²
r = loop radius
Make a substitution:
φ = B2πr²
Since the strength of the magnetic field is changing while the radius of the loop isn't changing, the change in magnetic flux Δφ is given by:
Δφ = ΔB2πr²
ΔB = change in magnetic field strength
Make another substitution:
ℰ = |ΔB2πr²/Δt|
Given values:
ΔB = 0.20T - 0.40T = -0.20T, r = 0.50m, Δt = 2.5s
Plug in and solve for ℰ:
ℰ = |(-0.20)(2π)(0.50)²/2.5|
ℰ = 0.13V
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V