Answer:
Any medium solid, liquid or gas is required for sound waves to travel.
Explanation:
A sound wave requires a medium to travel. Sound waves are mechanical waves that is why these waves require a medium to travel. Sound waves can travel through solids, liquids, and gases.
In solids, the particles of the medium are closely packed together as compared to liquids and gases. In liquids, particles are less tightly packed and almost negligible in gases.
Therefore sound waves produce vibration in the dense or solid medium. Denser the medium faster the sound waves travel. However sound waves can not travel through empty space.
Several short trips taken from a cold start can use ...twice... as much fuel as a longer multi-purpose trip covering the same distance when the engine is warm.
In cold weather, properly designed gasoline aids in engine starting, while in hot weather, it helps prevent vapor lock. In order to meet the requirements of a modern engine, the fuel must have the volatility for which the engine's fuel system was built and an antiknock quality strong enough to prevent knock during routine operation.
During the intake phase, the air and fuel are combined before being introduced into the cylinder. The spark ignites the fuel-air mixture after the piston compresses it, resulting in combustion. During the power stroke, the piston is propelled by the expansion of the combustion gases.
To learn more about engine and fuel please visit -
brainly.com/question/5181209
#SPJ4
Answer:
Mass of the planet = 1.48 × 10²⁵ Kg
Mass of the star = 5.09 × 10³⁰ kg
Explanation:
Given;
Diameter = 1.8 × 10⁷ m
Therefore,
Radius =
=
or
Radius of the planet = 0.9 × 10⁷ m
Rotation period = 22.3 hours
Radius of star = 2.2 × 10¹¹ m
Orbit period = 407 earth days = 407 × 24 × 60 × 60 seconds = 35164800 s
free-fall acceleration = 12.2 m/s²
Now,
we have the relation
g =
g is the free fall acceleration
G is the gravitational force constant
M is the mass of the planet
on substituting the respective values, we get
12.2 =
or
M = 1.48 × 10²⁵ Kg
From the Kepler's law we have
T² =
on substituting the respective values, we get
35164800² =
or
= 5.09 × 10³⁰ kg