It seems that you have missed the necessary options for us to answer this question so I had to look for it. Anyway, here is the answer. The one that occurs first in the generation of an action potential is that t<span>he membrane depolarizes. Hope this answers your question. Have a great day!</span>
        
             
        
        
        
The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is 

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So, 

The distance from the center of the square to one of the corners is 

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite. 
2) 

![V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between  energies. This is the work-energy theorem. So,[tex]W = U_b - U_a](https://tex.z-dn.net/?f=V_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%5Csqrt2%7D%20%2B%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B-2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%7D%5C%5CV_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%7D%20%28%5Cfrac%7B1%7D%7B%5Csqrt2%7D-1%29%5C%5CV_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%20%284%5Ctimes%2010%5E%7B-5%7D%29%28-0.29%29%5C%5CV_b%20%3D%20%28-%5Cfrac%7B2.9%5Ctimes10%5E%7B-6%7D%7D%7B%5Cpi%5Cepsilon_0%7D%29%5Btex%5D%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E3%29%20The%20work%20done%20on%20q3%20by%20q1%20and%20q2%20is%20equal%20to%20the%20difference%20between%20%20energies.%20This%20is%20the%20work-energy%20theorem.%20So%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW%20%3D%20U_b%20-%20U_a)


 
        
             
        
        
        
So we want to know what do electric field lines show except strength of the electric field. Electric field lines are lines that show us the field strength and the DIRECTION of the electric field. If the lines point away from the charge that is producing the lines, the charge is positive, and if the lines point towards the charge that is producing them that charge is negative.
        
             
        
        
        
I think its true i dont kno for sure
        
             
        
        
        
im no scientist but im pretty sure cool stars are warm colors and hot stars are cool colors, so red would be more cooler than blue.