According to the law of conservation of momentum:

m1 = mass of first object
m2 = mass of second object
v1 = Velocity of the first object before the collision
v2 = Velocity of the second object before the collision
v'1 = Velocity of the first object after the collision
v'2 = Velocity of the second object after the collision
Now how do you solve for the velocity of the second car after the collision? First thing you do is get your given and fill in what you know in the equation and solve for what you do not know.
m1 = 125 kg v1 = 12m/s v'1 = -12.5m/s
m2 = 235kg v2 = -13m/s v'2 = ?




Transpose everything on the side of the unknown to isolate the unknown. Do not forget to do the opposite operation.




The velocity of the 2nd car after the collision is
0.03m/s.
Answer:

Explanation:
As per thermal radiation we know that rate is heat radiation is given as

here we know that
T = 34 degree C = 307 K

e = 0.557


now we have




Objects absorb and reflect light differently depending on their physical characteristics, such as their shape or composition. Thanks to the reflection we can see the objects. Reflection can be defined as the change of direction of a wave, which, when in contact with the separation surface between two changing means, returns to the point where it originated. When the light illuminates the object, such as the tree, the rays of light will disperse in all directions allowing observation.
The correct answer is A. From every point on the surface of the tree, and in every direction
Answer: Really
Explanation:
Just look it up for this page and maybe you will find an anwser sheet.
The phenomena<span> of </span>atmospheric<span> electricity are of three kinds. ..... In the Earth-</span>ionosphere cavity, the electric field<span> and conduction current in the lower </span>atmosphere<span> </span>