Answer:

Explanation:
The two cars are under an uniform linear motion. So, the distance traveled by them is given by:

is the same for both cars when the second one catches up with the first. If we take as reference point the initial position of the second car, we have:

We have
. Thus, solving for t:

D. Genetic variation increases the likelihood of an allele being present that is best suited for the environment.
Answer:
649kg/m^3
Explanation:
Let p be the density of this particular object.
Formula for density:

We can substitute the givenmass and volume to find density of the object.

Therefore the density of this object is 649kg/m^3.
Answer:
F = G M m / R^2 gravitational force on planet of mass m.
None of these quantities change in the given hypothesis so
there will be no change in the orbit of mass m
<h2>Hello!</h2>
The answer is: B. Kinetic energy
<h2>
Why?</h2>
Since the ball is falling, speed increases because the gravity acceleration is acting. When speed increases, the kinetic energy increases too, so the ball is gaining kinetic energy.
The gravity acceleration is equal to
, it means that when falling, the ball will increase it's speed 9.81m every second.
We can calculate the kinetic energy by using the following formula:

Where:

Have a nice day!
<h2 />