1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
2 years ago
11

How long does it take for a spaceship to get to the moon.

Physics
1 answer:
Ugo [173]2 years ago
8 0

Answer:

about 3 days

It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft travels at least 240,000 miles (386,400 kilometers) which is the distance between Earth and the Moon. The specific distance depends on the specific path chosen.

Explanation:

no explanation

You might be interested in
A gas has an initial volume of 168 cm3 at a temperature of 255 K and a pressure of 1.6 atm. The pressure of the gas decreases to
goblinko [34]
Oh my lord lol I was do ready to help then I saw numbers
4 0
3 years ago
A 1.90-kg mass vibrating up and down on the end of a vertical spring has a maximum speed of 2.30 m/s. What is the total potentia
Pepsi [2]

Answer:

The answer to the question is;

The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.

Explanation:

To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg

Therefore the maximum kinetic energy of motion is given by

Kinetic Energy, KE = \frac{1}{2} mv^{2}

Where,

m = Attached vibrating mass = 1.90 kg

v = velocity of the string = 2.3 m/s

Therefore Kinetic Energy, KE = \frac{1}{2}×1.9×2.3² = 5.0255 J

From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion

Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion

That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.

Total PE = Maximum KE = 5.0255 J.

6 0
3 years ago
Sayid made a chart listing data of two colliding objects. A 5-column table titled Collision: Two Objects Stick Together with 2 r
Alborosie

Answer:

6 m/s is the missing final velocity

Explanation:

From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).

Object X had a mass of 300 kg, while object Y had a mass of 100 kg.

Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.

We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.

In numbers, and calling P_{xi} the initial momentum of object X and P_{yi} the initial momentum of object Y, we can derive the total initial momentum of the system: P_{total}_i=P_{xi}+P_{yi}= 300*10 \frac{kg*m}{s} -100*6\frac{kg*m}{s} =\\=(3000-600 )\frac{kg*m}{s} =2400 \frac{kg*m}{s}

Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):

Final momentum of the system: M * v_f=400kg * v_f

We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

2400 \frac{kg*m}{s} =400kg*v_f\\\frac{2400}{400} \frac{m}{s} =v_f\\v_f=6 \frac{m}{s}

7 0
3 years ago
Read 2 more answers
A manufacturer had 5 business locations. The producer always dealt with the manufacture's office manager for policy changes. The
Arturiano [62]
Tuberculosis. Reason: I just took the test and got it right
3 0
3 years ago
If the wave being sent is transmitted via an electromagnetic wave explain how the digital signal would be perceived if the signa
Andrej [43]

Answer:

amplitude is commonly for transmitting messages with a radio carrier wave, the amplitude (signal strength) of the carrier wave is varied in proportion to that of the message signal. at the receiving end, the message signal is extracted from the modulated carrier by demodulation. frequency is the encoding of information in a carrier wave with instantaneous frequency. with digital data, the frequency of the carrier is shifted among a set of frequencies, using digits like 1 and 0

6 0
3 years ago
Other questions:
  • Suppose our experimenter repeats his experiment on a planet more massive than Earth, where the acceleration due to gravity is g
    13·1 answer
  • A boy takes hold of a rope to pull a wagon (m = 50 kg) on a surface with a static coefficient of friction μS = 0.25. Calculate t
    6·2 answers
  • 2.486 L is equal to:
    10·2 answers
  • 5.0 Points The blue color of the sky is the result of
    10·1 answer
  • Mrs. Smith walks from her house 11.2 m to the grocer. Then she walks from the grocer 5.7 m to the pet store. Then she walks 32.7
    14·1 answer
  • (1) A net force of 265 N accelerates a bike and rider at 2.30 m/s. What is the mass of the
    7·1 answer
  • Describe the core-mantle-crust structures of the terrestrial worlds. What is differentiation? What do we mean by the lithosphere
    15·1 answer
  • Which of the device has the highest resistance?
    11·2 answers
  • I will give 50 pts and brainliest
    8·1 answer
  • a___of water a. of bread a. of soap a. of juice a. salt. a. sand a. of glass a. of corn fill in the blanks I follow him but righ
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!