Answer:
Change in potential energy = 7350 Joules
Explanation:
It is given that,
Side of cube, a = 0.5 m
Density of cube,
The cube is lifted vertically by a crane to a height of 3 m
We know that, density
So, m = d × V (V = volume of cube = a³)
m = 250 kg
We have to find the change in potential energy of the cube. At ground level, the potential energy is equal to 0.
Potential energy at height h is given by :
PE = 250 kg × 9.8 m/s² ×3 m
PE = 7350 Joules
So, change in potential energy of the cube is 7350 Joules.
Answer:
3MgCl2 has 9 atoms.
Explanation:
The Element Magnesium (Mg) has 3 atoms.
The Element Chloride (Cl) has 6 attoms.
Their fore 6 + 3 is 9 of course. 3MgCl2 has 9 atoms.
BTW: 3MgCl2 is a molecular compound as well as H2O and CO2.
He needs to improve his endurance time.
Answer:
a) (0, -33, 12)
b) area of the triangle : 17.55 units of area
Explanation:
<h2>
a) </h2>
We know that the cross product of linearly independent vectors and gives us a nonzero, orthogonal to both, vector. So, if we can find two linearly independent vectors on the plane through the points P, Q, and R, we can use the cross product to obtain the answer to point a.
Luckily for us, we know that vectors and are living in the plane through the points P, Q, and R, and are linearly independent.
We know that they are linearly independent, cause to have one, and only one, plane through points P Q and R, this points must be linearly independent (as the dimension of a plane subspace is 3).
If they weren't linearly independent, we will obtain vector zero as the result of the cross product.
So, for our problem:
<h2>B)</h2>
We know that and are two sides of the triangle, and we also know that we can use the magnitude of the cross product to find the area of the triangle:
so:
Answer:
4.6 m
Explanation:
First of all, we can find the frequency of the wave in the string with the formula:
where we have
L = 2.00 m is the length of the string
T = 160.00 N is the tension
is the mass linear density
Solving the equation,
The frequency of the wave in the string is transmitted into the tube, which oscillates resonating at same frequency.
The n=1 mode (fundamental frequency) of an open-open tube is given by
where
v = 343 m/s is the speed of sound
Using f = 37.3 Hz and re-arranging the equation, we find L, the length of the tube: