Answer:
H₃PO₄ is an acid because donates the proton to fenolate.
Fenolate is the base because accepts the proton from the acid.
Explanation:
Bronsted theory mentioned that acid is the one that donates a proton to another compound and base is the one that receives it.
H₃PO₄ + C₆H₅O⁻ ⇄ H₂PO₄⁻ + C₆H₅OH
acid base conj. base conj. acid
H₃PO₄ is an acid because donates the proton to fenolate.
Fenolate is the base because accepts the proton from the acid.
If we follow the dissociation, the diacid phosphate can donate two more protons, it is still a Bronsted acid, but it can act as an acid or a base. This is called amphoteric.
Answer:
Explanation:
Just saw your request regarding answering this so here it is:
All of them belong of Group 1 in periodic table and thus are highly reactive! Pattern of reactivity for Group 1 (Alkali metals) increases as you move down the group as their radius keeps increasing and thus electrons can be easily lost. Thus, to ID the lumps, Sheena should look at their reactivity and she should get the following trend:
Most reactive: Potassium (K)
Intermediate: Sodium (Na)
Least reactive: Lithium (Li)
Hope it helps!
It’s the 3d one
Good luckkkkkkkk
A pure substance refers to an element or a compound that has no component of another compound or element. Pure substances are made of only one type of atom or molecule. Hydrogen gas and pure iron are examples of pure substances. Hydrogen consists of hydrogen atoms only while iron consists of only iron atoms. Mixing two pure substances results in a mixture. To separate the two, scientists use a method known as filtration. Mixtures can either be homogeneous or heterogeneous. The measure used to determine how pure a substance may be called purity. Besides hydrogen and iron, other pure substances include gold, diamonds, sugar, and baking soda.