Answer: i think the 3,4,2
Explanation:
<span>The mass of one mole of sodium bicarbonate (aka NaHCO3) is equal to 1 * 22.99g/mol + 1 * 1.00g/mol + 1 * 12.01g/mol + 3 * 16.00g/mol = 83.91g/mol. From this, we can convert 4.2g of NaHCO3 to moles by dividing by 83.91g/mol, to get 0.050 moles of sodium bicarbonate.</span>
Answer: [N2]₀ = 10M and [H2]₀ = 11M
Explanation: To calculate the initial concentration, you would have to set up an ICE table, which is an organized way of tracking known quantities or the ones you want to find. ICE stands for:
I is initial amount;
C is change in concentration;
E is for equilibrium concentration;
For the mixture,
N2 3H2 2NH3
I [N2]₀ [H2]₀ 0
C - x -3x +2x
E [N2]₀ - x =8 [H2]₀ - 3x =5 2x =4
With the product, we can find "x":
2x=4
x=2M
With x=2, find the concentrations:
[N2]₀ - x = 8
[N2]₀ = 10M
[H2]₀ - 3x = 5
[H2]₀ = 11M
The initial concentrations of nitrogen gas [N2] is 10.0 M and of hydrogen gas [H2] is 11.0 M.
Answer:
3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate.
Explanation:

The balance chemical equation is :

Mass of barium hydroxide octahydrate = 6.5 g
Moles of barium hydroxide octahydrate = 
According to reaction, 2 moles of ammonium thiocyanate reacts with1 mole of barium hydroxide octahydrate. The 0.020635 moles of barium hydroxide octahydrate will react with:

Mass of 0.04127 moles of ammonium thiocyanate;

3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate
Eukaryotic cells, the theoretical maximum yield of ATP generated per glucose is 36 to 38, depending on how the 2 NADH generated in the cytoplasm during glycolysis enter the mitochondria and whether the resulting yield is 2 or 3 ATP per NADH