Answer : The molar mass of an acid is 266.985 g/mole
Explanation : Given,
Mass of an acid (HX) = 4.7 g
Volume of NaOH = 32.6 ml = 0.0326 L
Molarity of NaOH = 0.54 M = 0.54 mole/L
First we have to calculate the moles of NaOH.

Now we have to calculate the moles of an acid.
In the titration, the moles of an acid will be equal to the moles of NaOH.
Moles of an acid = Moles of NaOH = 0.017604 mole
Now we have to calculate the molar mass of and acid.

Now put all the given values in this formula, we get:


Therefore, the molar mass of an acid is 266.985 g/mole
Use formula: Initial Pressure x Initial Volume/Initial temperature = Final pressure x Final Volume/Final Temperature => 17.15L
Answer:
The photoelectric effect
Explanation: hope it helps
Each year over 100,000 new organic compounds are produce
Reactant C is the limiting reactant in this scenario.
Explanation:
The reactant in the balanced chemical reaction which gives the smaller amount or moles of product is the limiting reagent.
Balanced chemical reaction is:
A + 2B + 3C → 2D + E
number of moles
A = 0.50 mole
B = 0.60 moles
C = 0.90 moles
Taking A as the reactant
1 mole of A reacted to form 2 moles of D
0.50 moles of A will produce
= 
thus 0.50 moles of A will produce 1 mole of D
Taking B as the reactant
2 moles of B reacted to form 2 moles of D
0.60 moles of B reacted to form x moles of D
= 
x = 2 moles of D is produced.
Taking C as the reactant:
3 moles of C reacted to form 2 moles of D
O.9 moles of C reacted to form x moles of D
= 
= 0.60 moles of D is formed.
Thus C is the limiting reagent in the given reaction as it produces smallest mass of product.