As,
5471 kJ heat is given by = 1 mole of Octane
Then,
5310 kJ heat will be given by = X moles of Octane
Solving for X,
X = (5310 kJ × 1 mol) ÷ 5471 kJ
X = 0.970 moles of Ocatne
So, 0.970 moles of Octane will liberate 5310 kJ energy. Now changing moles to mass,
As,
Moles = mass / M.mass
Or,
Mass = Moles × M.mass
Putting values,
Mass = 0.970 mol × 114.23 g/mol
Mass = 110.83 g of Octane
Answer: The correct option is 2.
Explanation: Heat flow is defined as the transfer of energy from hotter object to cooler object when two objects are kept together at different temperatures. As the energy remains conserved, so the heat flow will take place until the equilibrium is attained.
In the above asked question, Object A is at 40° C and Object B is at 80° C.
Object B is at higher temperature, so the heat flow will take place from Object B to Object A.
Hence, the correct option is 2.
Answer:
HF(aq)+NaOH(aq)→NaF(aq)+H2O(l)
Explanation:
Complete question
Dissolved hydrofluoric acid reacts with dissolved sodium hydroxide to form water and aqueous sodium fluoride. What is the net ionic equation
Equilibrium equation between the undissociated acid and the dissociated ions
HF(aq)⇌H+(aq)+F−(aq)
Sodium hydroxide will dissociate aqueous solution to produce sodium cations, Na+, and hydroxide anions, OH−
NaOH(aq)→Na+(aq)+OH−(aq)
Hydroxide anions and the hydrogen cations will neutralize each other to produce water.
H+(aq)+OH−(aq)→H2O(l)
On combining both the equation, we get –
HF(aq)+Na+(aq)+OH−(aq)→Na+(aq)+F−(aq)+H2O(l)
The Final equation is
HF(aq)+NaOH(aq)→NaF(aq)+H2O(l)
Gasoline, kerosene, and lighter fluid.