Answer:
Balanced forces are equal and opposite forces that act on the same object. ... Action-reaction forces are equal and opposite forces that act on different objects, so they don't cancel out. In fact, they often result in motion.
It is a stretch of the atmosphere ranging from the upper mesosphere to the lower parts of the thermosphere. It’s useful to us in radio communication.
Answer : The final energy of the system if the initial energy was 2000 J is, 3500 J
Solution :
(1) The equation used is,

where,
= final internal energy
= initial internal energy
q = heat energy
w = work done
(2) The known variables are, q, w and 
initial internal energy =
= 2000 J
heat energy = q = 1000 J
work done = w = 500 J
(3) Now plug the numbers into the equation, we get

(4) By solving the terms, we get




(5) Therefore, the final energy of the system if the initial energy was 2000 J is, 3500 J
Answer:
<u>EFFECTS: ( doughts)</u>
- There would be less water in the river for you and other people who live along the river to use.
- If we use too much water during times of normal rainfall, we might not have enough water when a drought happens.
<u>EFFECTS:( FLOODS)</u>
- The immediate impacts of flooding include loss of human life, damage to property, destruction of crops, loss of livestock, and deterioration of health conditions owing to waterborne diseases.
- power plants, roads and bridges are damaged and disrupted, some economic activities may come to a standstill, people are forced to leave their homes and normal life is disrupted.
How to prevent from flooding is :
- Construct buildings above flood levels.
- Tackle climate change
How to prevent from droughts :
- drought trends that may occur based on statistical and actual weather forecasts.
- In the U.S., the U.S. Drought Monitor provides a day-by-day visual of the drought conditions around the country.
* Hopefully this helps:) Mark me the brainliest:)!!!
~234483279c20~
this can be solve using the formala of free fall
t = sqrt( 2y/ g)
where t is the time of fall
y is the height
g is the acceleration due to gravity
48.4 s = sqrt (2 (1.10e+02 m)/ g)
G = 0.0930 m/s2
The velocity at impact
V = sqrt(2gy)
= sqrt( 2 ( 0.0930 m/s2)( 1.10e+02 m)
V = 4.523 m/s
<span> </span>