The correct answer is
"As the distance from the earth increases, the gravitational pull on the spaceship would decrease."
In fact, the gravitational force (attractive) exerted by the Earth on the spaceship is given by
where G is the gravitational constant, M the Earth's mass, m the mass of the spaceship and d the distance of the spaceship from the Earth. As we can see from the formula, as the distance d between the spaceship and the Earth increases, the gravitational force F decreases, so answer D) is the correct one.
<span>Δ</span>E = q + w
q = heat (quantity of)
q and w can be positive or negative depending on if work/heat is being absorbed/done on the system or released/done by the system
Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string =
linear density of the string =
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
Answer:
Torque on the rocket will be 1.11475 N -m
Explanation:
We have given that muscles generate a force of 45.5 N
So force F = 45.5 N
This force acts on the is acting on the effective lever arm of 2.45 cm
So length of the lever arm d = 2.45 cm = 0.0245 m
We have to find torque
We know that torque is given by
So torque on the rocket will be 1.11475 N -m
Answer:
The rate of change of the shadow length of a person is 2.692 ft/s
Solution:
As per the question:
Height of a person, H = 20 ft
Height of a person, h = 7 ft
Rate = 5 ft/s
Now,
From Fig.1:
b = person's distance from the lamp post
a = shadow length
Also, from the similarity of the triangles, we can write:
Differentiating the above eqn w.r.t t:
Now, we know that:
Rate =
Thus