Answer:
180 Newton(N)
Explanation:
force =mass *acceleration
=60 * 3
=180 kgm/s^2
=180 N
Answer:
Bulk modulus = 1.35 ×
Pa
Explanation:
given data
density = 1400 kg/m³
frequency = 370 Hz
wavelength = 8.40 m
solution
we get here bulk modulus of the liquid that is
we know Bulk Modulus =
...............
here
is density i.e 1400 kg/m³
and v is = frequency × wavelength
v = 370 × 8.40 = 3108 m/s
so here bulk modulus will be as
Bulk modulus = 3108² × 1400
Bulk modulus = 1.35 ×
Pa
Answer:
True The net force must be zero for the acceleration to be zero
Explanation:
In order to analyze the statements of this problem we propose your solution.
First let's look at Newton's first, which stable that every object is at rest or with constant speed unless something takes it out of this state (acceleration)
Now let's look at the second postulate, which says that force is related to the product of the mass of a body and its acceleration.
As a result of these two laws, for a body is a constant velocity the summation force on it must be zero.
Now we can analyze the statements given.
True The net force must be zero for the acceleration to be zero
False. If the force is different from zero, there is acceleration that changes the speeds
False. There may be forces, but the sum of them must be zero
False. If a force acts, the acceleration is different from zero and the speed changes
Answer:
7.65x10^3 m/s
Explanation:
The computation of the satellite's orbital speed is shown below:
Given that
Earth mass, M_e = 5.97 × 10^24 kg
Gravitational constant, G = 6.67 × 10^-11 N·m^2/kg
Orbital radius, r = 6.80 × 10^6m
Based on the above information
the satellite's orbital speed is
V_o = √GM_e ÷ √r
= √6.67 × 10^-11 × 5.97 × 10^24 ÷ √6.80 × 10^6
= 7.65x10^3 m/s
Answer:
The force when θ = 33° is 1.7625 times of the force when θ = 18°
Explanation:
The force on a moving charge through a magnetic field is given by
F = qvB sin θ
q = charge of the moving particle
v = Velocity of the moving charge
B = Magnetic field strength
θ = angle between the magnetic field and the velocity (direction of the motion) of the moving charge
Because qvB are all constant, we can call the expression K.
F = K sinθ
when θ = 18°,
F = K sin 18° = 0.309K
when θ = 33°, let the force be F₁
F₁ = K sin 33° = 0.5446K
(F₁/F) = (0.5446K/0.309K) = 1.7625
F₁ = 1.7625 F
Hope this Helps!!!