Answer:
You are are in motion as the car is driving ñ, and when it stops, your body continues to be in motion
Explanation:
Answer:
2.64 m/s
Explanation:
Given that a 600 kilogram great "yellow" shark swimming to the right at a speed of 3 meters traveled each second as it tries to get lunch. An unsuspecting 100 kilogram blue fin tuna is minding its own business swimming to the left at a speed of 0.5 meters traveled each second. GULP! After the great "yellow" shark "collides" with the blue fin tuna
Momentum = MV
Momentum of the yellow shark before collision = 600 × 3 = 1800 kgm/s
Momentum of the tun final before collision = 100 × 0.5 = 50 kgm/s
Total momentum before collision = 1800 + 50 = 1850 kgm/s
Let's assume that they move together after collision. Then,
1850 = ( 600 + 100 ) V
1850 = 700V
V = 1850 / 700
V = 2.64285 m/s
Therefore, the momentum of the shark after collision is 2.64 m/ s approximately
Gravity is what holds the planets in orbit around the sun and what keeps the moon in orbit around Earth. The gravitational pull of the moon pulls the seas towards it, causing the ocean tides. Gravity creates stars and planets by pulling together the material from which they are made.
Answer:

Explanation:
It is given that,
Weight of the person on Earth, W = 818 N
Weight of a person is given by the following formula as :

g is the acceleration due to gravity on earth


m = 83.46 kg
The mass of an object is same everywhere. It does not depend on the location.
Let W' is the weight of the person on the surface of a nearby planet, W' = 5320 N
g' is the acceleration due to gravity on that planet. So,


So, the acceleration due to gravity on that planet is
. Hence, this is the required solution.