1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
4 years ago
10

Calculate the energy (in kj/mol) required to remove the electron in the ground state for each of the following one-electron spec

ies using the bohr model.
(a) H = ? kJ/mol(b) B^4+ = ? kJ/mol(c) Li^2+ = ? kJ/mol(d) Mn^24+ = ? kJ/mol
Chemistry
1 answer:
Bess [88]4 years ago
4 0

Explanation:

E_n=-13.6\times \frac{Z^2}{n^2}ev

where,

E_n = energy of n^{th} orbit

n = number of orbit

Z = atomic number

a) Energy change due to transition from n = 1 to n = ∞ ,hydrogen atom .

Z = 1

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{1^2}{1^2}eV=-13.6 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{1^2}{(\infty)^2}eV=0

Let energy change be E for 1 atom.

E=E_{\infty}-E_1=0-(-13.6  eV)=13.6 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 13.6 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 13.6 \times 1.60218\times 10^{-22} kJ/mol

E'=1,312.17 kJ/mol

The energy  required to remove the electron in the ground state is 1,312.17 kJ/mol.

b) Energy change due to transition from n = 1 to n = ∞ ,B^{4+} atom .

Z = 5

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{5^2}{1^2}eV=-340 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{5^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-340eV)=340 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 340eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 340\times 1.60218\times 10^{-22} kJ/mol

E'=32,804.31 kJ/mol

The energy  required to remove the electron in the ground state is 32,804.31 kJ/mol.

c) Energy change due to transition from n = 1 to n = ∞ ,Li^{2+}atom .

Z = 3

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{3^2}{1^2}eV=-122.4 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{3^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-122.4 eV)=122.4 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 122.4 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 122.4\times 1.60218\times 10^{-22} kJ/mol

E'=11,809.55 kJ/mol

The energy  required to remove the electron in the ground state is 11,809.55 kJ/mol.

d) Energy change due to transition from n = 1 to n = ∞ ,Mn^{24+}atom .

Z = 25

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{25^2}{1^2}eV=-8,500 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{25^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-8,500 eV)=8,500 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 8,500eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 8,500 \times 1.60218\times 10^{-22} kJ/mol

E'=820,107.88 kJ/mol

The energy  required to remove the electron in the ground state is 820,107.88 kJ/mol.

You might be interested in
Demonstrate In A Brief Paragraph How The Search To Explain Planetary Orbits Exemplifies The Scientific Method
Sveta_85 [38]

People firstly believe that the planets move in a circular orbit until Newton came up with his hypothesis by inventing calculus so that we could understood and calculated planetary orbits and their accuracy.

<u>Explanation:</u>

  • Everyone assumed the planets were perfect circles until Newton came up with an idea. Slowly people would make maps of the orbits that added circles on circles, and they could never really explain about the movement of the planet. They simply say that planets move on circles but they lacked the math to explain or prove it. Then Newton came up with an idea of inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
  • Firstly people used their observations and say that the orbits looked like circles, then they developed their models and did the math, and proposed their hypothesizes which were wrong, until Newton came along and tried to match a model that used elliptical orbits and invented the math that allowed him to make predictions with it. His model worked for most planets.
  • However he could not explain about the planet Mercury for instance since it was a very strange orbit. Then after the Einstein's theory of General Relativity he could also explain very deeply about it.
  • Scientists and Astronomers made hypothesizes that there was another planet orbiting too close to the sun to see with telescopes, called Vulcan, that explained mercury's orbit before Einstein's theory. Then long after we had telescopes which was good enough to see if there was a planet orbiting closer to the sun than mercury.  
8 0
3 years ago
State the type of bonding—ionic, covalent, or metallic—you would expect in each: (c) Na(s).
miv72 [106K]

Na(s) forms an ionic bond.

<h3>What is ionic bond?</h3>

The main interaction in ionic compounds is ionic bonding, a type of chemical bonding that involves the electrostatic attraction between two atoms or ions with dramatically differing electronegativities. Along with metallic and covalent bonds, it is one of the most common types of bonds. Atoms (or collections of atoms) possessing an electrical charge are known as ions. Ions with negative charges are created when atoms gain electrons (called anions). Positively charged ions are produced when atoms lose electrons (called cations). In contrast to covalence, this electron transfer is referred to as electrovalence.

Ionic chemicals normally do not conduct electricity when solid, only when molten or in solution. Depending on the charge of the ions they are made of, ionic compounds typically have a high melting point.

To learn more about ionic bond from the given link:

brainly.com/question/13526463

#SPJ4

5 0
2 years ago
Describe how oxidation and reduction involve electrons, change oxidation numbers, and combine in
Sholpan [36]

Answer:

Redox

Explanation:

Reduction is gain of electrons

oxidation is loss of electrons

3 0
3 years ago
If thermal energy (heat) must be added to a chemical reaction in order for the reaction to take place, the reaction is _________
Harlamova29_29 [7]
<span>If thermal energy (heat) must be added to a chemical reaction in order for the reaction to take place, the reaction is endothermic. </span>
7 0
3 years ago
This is what the map is for question 4
serious [3.7K]

......................

4 0
3 years ago
Other questions:
  • Many manufacturing processes involve chemical reactions that reach equilibrium. Why would chemists adjust conditions to favor th
    5·2 answers
  • C) when two electrons occupy the bonding molecular orbital above, what type of bond results? explain.
    8·2 answers
  • The nonvolatile, nonelectrolyte cholesterol, C27H46O (386.60 g/mol), is soluble in benzene C6H6. Calculate the osmotic pressure
    10·1 answer
  • When two hydrogen nuclei combine to form one helium nucleus, nuclear fusion has taken place.. . True or False
    11·2 answers
  • Enough energy is added to matter in the liquid state, it will change into a different state.
    5·1 answer
  • What is the total number of electrons shared in a double covalent bond between two atoms?
    8·2 answers
  • Green plants use light from the Sun to drive photosynthesis, Photosynthesis is a chemical reaction in which water (H1,0) and car
    13·1 answer
  • You have 0.672 L of 4.78 M aqueous AlCl3 solution in a glass. If you gently heat the solution until only 0.380 L is left, what i
    15·1 answer
  • Who wants to help me ???
    13·1 answer
  • Un compuesto químico se puede representar gráficamente por medio de una
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!