Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2
Answer:
induced emf = 28.65 mV
Explanation:
given data
diameter = 7.3 cm
magnetic field = 0.61
time period = 0.13 s
to find out
magnitude of the induced emf
solution
we know radius is diameter / 2
radius = 7.3 / 2
radius = 3.65 m
so induced emf is dπ/dt = Adb/dt
induced emf = A × ΔB / Δt
induced emf = πr² × ΔB / Δt
induced emf = π (0..65)² × ( 0.61 - (-0.28)) / 0.13
induced emf = 0.0286538 V
so induced emf = 28.65 mV
Explanation:
Large electrical shifting magnets have concentrated retaining strength to lift dense, ferric objects and a deep-reaching magnetization. An immensely useful materials management technique is these electromagnetic rises.
Answer:a. 24 kg m/s
b. 3/5s
Explanation:
a.impulse is the change in momentum so at first the momentum is zero because the ball was at rest and the final momentum is 1.2kg*20m/s=24 kg m/s
so the impulse would be (24-0) kg m/s=24 kg m/s
b. so the impulse equation is impulse is force *delts time
so 24 kg m/s=40N*t
t=24 kg m/s /40N=3/5 s
D,f,g,h,i,a,e,c,j. I’m sure that it